NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DYNAMIC PARAMETERIZATION OF IPSEC
by
Christopher D. Agar
December 2001

Thesis Advisor: Cynthia E. Irvine
Second Reader: Timothy E. Levin

Approved for public release; distribution is unlimited

Report Documentation Page

Report Date Report Type Dates Covered (from... to)
19Dec2001 N/A -
Title and Subtitle Contract Number

Dynamic Parameterization of IPSEC
Grant Number

Program Element Number

Author (s) Project Number

Christopher Agar
Task Number

Work Unit Number

Performing Organization Name(s) and Address(es) Performing Organization Report Number
Naval Postgraduate School Monterey, California

Sponsoring/M onitoring Agency Name(s) and Sponsor/Monitor’s Acronym(s)

Address(es)

Sponsor/Monitor’s Report Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification Classification of thispage
unclassified unclassified

Classification of Abstract Limitation of Abstract
unclassified uu

Number of Pages
334

THISPAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 2001 Master’sThesis
. TITLE AND SUBTITLE: Dynamic Parameterization of |Psec 5. FUNDING NUMBERS

6. AUTHOR(S) Christopher D. Agar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited A

13. ABSTRACT (maximum 200 words)

The Internet has become the medium of choice for communications between most Government and
Military organizations. Unfortunately the key Internet protocols were not designed to provide security and their
security vulnerabilities have become apparent. |Psec was developed to provide users with a range of security
services, for both confidentiality and integrity, enabling them to securely pass information across networks.
Automated security mechanisms are typically designed and/or calibrated to meet an organization’s security policy.
However, once the mechanism is in operation the implemented policy is in a static state, and cannot be adjusted
according to dynamic environmental conditions. This means that security mechanismsfail to reflect the policy that
is appropriate for the changing contexts. Dynamic parameterization enables security mechanisms to adjust the
level of security service “on-the-fly” to respond to changing conditions (i.e. INFOCON, THREATCON). This
work includes the extension of the attributes encoded by the KeyNote Trust Management System and modification
of the IPsec mechanism to incorporate dynamic parameters into the security service selection mechanism, and the
construction of a graphical user interface, for demonstrating “ proof-of-concept” of Dynamic Parameterization of
OpenBSD 2.8 IPsec.

14. SUBJECT TERMS KeyNote, ISAKMP, IKE, IPsec, Graphical User Interface, Security | 15. NUMBER OF
Assoication (SA), Security Policy Database (SPD), Security Association Datbase (SAD), Security | PAGES
Proposd 334
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Sandard Form 298 (Rev. 2-89)

Prescribed by ANS| Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited.

DYNAMIC PARAMETERIZATION OF IPSEC
Christopher D. Agar

Lieutenant, United States Navy
B.S., University of Florida, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2001

Author: M/‘/\/

Christolﬁer D. Agar

Approved by: /47_1'——' ; C'Q“"-"—"

th1a E. Irvine, Thesis Advisor

Lx

Tlmothy E. I£vin, Second Reader

Chnstopher S. le, Chairman
Computer Sc1ence Department

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The Internet has become the medium of choice for communications between most
Government and Military organizations. Unfortunately the key Internet protocols were
not designed to provide security and their security vulnerabilities have become apparent.
IPsec was developed to provide users with a range of security services, for both
confidentiality and integrity, enabling them to securely pass information across networks.
Automated security mechanisms are typically designed and/or calibrated to meet an
organization’s security policy. However, once the mechanism is in operation the
implemented policy is in a static state, and cannot be adjusted according to dynamic
environmental conditions. This means that security mechanisms fail to reflect the policy
that is appropriate for the changing contexts. Dynamic parameterization enables security
mechanisms to adjust the level of security service “onthe-fly” to respond to changing
conditions (i.e. INFOCON, THREATCON). This work includes the extension of the
attributes encoded by the KeyNote Trust Management System and modification of the
IPsec mechanism to incorporate dynamic parameters into the security service selection
mechanism, and the construction of a graphical user interface, for demonstrating “ proof-

of-concept” of Dynamic Parameterization of OpenBSD 2.8 | Psec.

THISPAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

VI SO 1 L L I 1 | 1
A PURPOSEottt sttt bt nreens 1
B BACKGROUND ..ottt sttt st ens 1
C EXPECTED BENFITSOF THE RESEARCHcoooviiiieieeeceee e 2
D RESEARCH OBJECTIVES ...ttt 3
E. THE ROAD TO DYNAMIC PARAMETERIZATIONcccooeviieievenieine 3
QUALITY OF SECURITY SERVICE (QOSS)....ccccoeiereriesieseseseeeeseeseesiessessesnens 5
A. INTRODUCTION ..ottt eeee ettt ese e e s e saesressesreenenneas 5
B. QUALITY OF SECURITY SERVICE (QOS)cccovreririririerienie s 5
C. QUALITY OF SECURITY OF SERVICE (QOSS)ccoveveirrierieriesiesieenene 7
1. Managing Quality of Security Service (Q0SS)ccccevvvrvrerenerienne. 9
D. CONCLUSION .ttt sttt st st sn b 13
SYSTEM ARCHITECTURE ..ottt 15
A. I RO 1 L L I 0 S 15
B. OVERVIEW OF IPSEC ...ttt 15
C. IPSEC ARCHITECTURE ..ottt 18
1 Security Services Provided Dy IPSEC.........covviiniiiicieice e 18
D. ANALY SIS o ettt e a et nre e renneas 65
1 I PseC (RE)INitialiZation.........cccooeeveeieiiece e 65
2. I PSEC OULPUL PrOCESSING ...c.veeeeiieerieeiiniie sttt 65
3. IPSEC I NPUL PrOCESSINGcoviieriieiieieeieie ettt 67
E. CONCLUSION .ttt sttt st st sn b 69
DESIGN AND PROGCESS ..ottt sttt ae st s sne s 71
A. I RO 1 L L I 0 S 71
B. PROVIDING GRANULARITY TO KEYNOTEccciiiiiieninerenene 72
1. Goal 72
2. PrOCESSREVIEW ...ttt e 72
3. MOodifiCation PRASES.......c.cceieeieiierece e 78
C. PARAMETERIZING AND IMPROVING ISAKMPD.CONF -
KEYNOTE PROPOSAL LOADING PROCESS.......cccccovmieneneneiesienens 79
1 Goal 79
2. PrOCESS REVIEW ...ttt s 79
3. ModificationS PRASES.........cccuiiiiiiiieie s 82
4, Tesing 83
D. CONCLUSION .ttt sttt s sa b e 83
IMPLEMENTATION .ottt st snenne s 85
A. INTRODUCTION ..ottt ee e sie sttt saesaesaessessesnesneens 85
B. PROVIDING GRANULARITY TO KEYNOTE ...cccoeevieieeeevere e 85
1 Parameterization of KEYNOLE...........cccoveeveeiecieiece e 85

vii

C. REPLACING ISAKMPD.CONF WITH KEYNOTEccceoeiiiiiiieienne 93
1 Current isakmpd.CONTcoeoiiiiieree s 93
2. Process of Replacing isakmpd.conf with KeyNote...........c.ccoceveene 93
D. CONCLUSION .ttt ettt s ss et snesrenreas 129
VI. GRAPHICAL USER INTERFACE (GUI) DEMOSTRATIONccccovcvrrrrrnnnnn. 131
A. INTRODUCTION ..ottt snesnesneens 131
B. COMMAND-LINE ENVIRONMENToooiiiiiiinieneneneeeeee e 131
1 I PSEC System FIUSN........ooiiicie e 131
2 Setting Up and Mounting the Security Policy Database.............. 131
3 [PSEC EXECULION ...t 133
4 I Psec Connection Terminationccovevevenenienieeneenee e 134
5. Display SPD 134
6. Display SAD 135
7. tcpdump 136
C. GRAPHICAL USER INTERFACE (GUI) DEMONSTRATION 136
1. Goal 136
2. M echanism of DemMONSEr ation.........cccevererenenenenieieeee e 136
3. Graphical Demonstration CoOmponents.........ccccceveevceeveesieeeseeeenns 139
D. CONCLUSION .ttt te e ese e e ssessessessennens 175
VIl. RESEARCH SUMMARY AND FUTURE WORKccccooitriiriieene e 177
A. INTRODUCTION ...ttt st see e ens 177
B. SUMMARY OF RESEARCH PERFORMED IN THISTHESIS......... 177
1. Resear ch ConClUSIONSocvvieiiceceeee e 179
C. FUTURE DESIGN AND IMPLEMENTATION ON
PARAMETERIZATION ..ottt s 180
1. Ability to Handle all Possible Security Parameter
COMDBINALIONS ... 180
2. Improving Dynamic Parameter Loading by Utilizing “Palicy-
Callback” Embedded Functionalityccccocevvnirennnne 180
3. Eliminate the Need for isakmpd.conf Entirely.......ccccccceeveienene. 181
4, Develop a Parsing Mechanism to Retrieve the Initial Security
Policy Database ENtries........ccooveieeienieniese e 181
D. HARNESSING OPENBSD’S IPSEC MECHANISM CAPABILITIES 181
1. Behavior with all Possible Combinations of QoSS and non
QOSS PEEIS ...ooe ettt 181
2. Per-User / Per-Application Relationship Capability 182
3. Explore Proposal Caching ISSUES.........ccccvvvevevceveere e 182
4, Security Policy EItOr......cccoviieiie e 182
5. Additional Network Configurations...........ccceeeeeeeeieienenenenenene 182
6. [PVB AAArESSES ...ttt 183
7. Distribution of KeyNote POIICIES.........cccceeieeviececeeece e 183
8. KEYNOLE ProteCtiON.ccceriiiieiieie e 183
0. Secure Dissemination & Storage of QoSS Parameters Values...183
10. [PSEC COStING I SSUES......ocueecieeie e steesie ettt ee e 183
11. Graphical User Interface........coccoveeieiieneneseeseee e 183

viii

E. CONCLUSION L. e 184

APPENDIX A, CONF.C ... 185
APPENDIX B. IKE_QUICK_MODE.C......ccoiiiiieiere et 231
APPENDIX C. DEMO.JAVA ... 235
APPENDIX D. SPD.JAVA ..o 245
APPENDIX E. DEMO_SUPPORT_FUNCTIONSJAVA ... 251
APPENDIX F. SPFK.JAVA ... oo s 265
APPENDIX G. DP_CONSOLE.JAVA ... 269
APPENDIX H. IPSECINFO.JAVA ..o 281
APPENDIX I. TCPDUMPJIAVA ... 295
APPENDIX J. ISAKMPD.CONF FILE ..ot 299
APPENDIX K. [SAKMPD.POLICY FILE ..ot 301
APPENDIX L. KEYNOTEDNFFINAL.POLICY FILE.....coiiiieireeeeeeeeee e 305
APPENDIX M. SECURITY PROPOSAL SUMMARY ..o 309
LIST OF REFERENCES ... 311
INITIAL DISTRIBUTION LIST .o 315

THISPAGE INTENTIONALLY LEFT BLANK

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.

Figure 3.10.
Figure 3.11.
Figure 3.12.
Figure 3.13.
Figure 3.14.
Figure 3.15.
Figure 3.16.
Figure 3.17.
Figure 3.18.
Figure 3.19.
Figure 3.20.
Figure 3.21.
Figure 3.22.
Figure 3.23.
Figure 3.24.

Figure4.1.
Figure 4.2.
Figure4.3.
Figure 4.4.
Figure 4.5.
Figure5.1.
Figure5.2.
Figure 5.3.
Figure 5.4.

Figure 5.6.
Figure5.7.

LIST OF FIGURES

Quality Of SErvice (QOS)......coiiiriririirireeee e 7
Quality of Security Service (QOSS).cccceeiirieerieie e eree e e 8
Mapping Security Attributes to Security PoliCy.cccoeveevieiiieiececciecies 12
Costing Framework MO ... 13
IPsec vs. VPN Security MeChaniSms.ccccevieienenicce e 16
[PSEC ATCRITECIUIE. ... e 18
ESP- Protected [P PaCKEL.ccooeeiieeseeeeese e 20
Encrypting and Decrypting using CBC and V.ccccveririnienenene e 21
AH-Protected [P PaCKeL.ccooeiiiiiiiiceseee e 22
[PSEC CONFIQUIALIONS. ..ottt s 24
IPsec Transport and Tunnel MOUES. ..o 25
TranSPOrt AGJACENCY. ...cveeireeeeieeerie et ste et esreeeeenee s 27
[terated TUNNEIING. ..ooveeieece e ere e 27
IPSEC SECUNTY POIICY. ..ceeiiieie e 29
| Psec Security Policy Database (SPD) Populating Mechanisms. 30
Security Policy Database (SPD).cccveiieiiie e st 32
SAD: Security ASSOCIation Database............coevererenerenieeeeeeese e 34
IPSEC INPUE MOTUIE. ... 37
[PSeC OULPUL MOAUIE.eeeeieceecieee e 38
Controlling EVentS for TKE.cooo i 41
|Psec Security Association Process Defined by ISAKMPD.ccovvveveneee. 42
IKEPhase] —Main MOGE. ..ot 43
IKE Phase | AQQressiVe MOGE.coouviiieiiieciee et 44
IKE Phase Il —QUICK MOGE.cooiiiiiieieeie e 46
I1SAKMPA.CONT PrOCESS.ecveieeeiieeiesiees ettt et ste et eee e e nne e 58
KEYNOLE PrOCESS.cveiiiiie ettt sttt st sne e sne e nnnes 60
[PSEC ATCRITECIUIE. ... et 67
[PSEC ATCRITECIUIE. ..o 69
Current KEYNOLE PrOCESS.uviiiiiiiiie ittt 74
An Example of a Condition Statement inKeyNoOte.cccceveevereeneniienene 76
Modified KEYNOLE PrOCESS.ccoiiiiriiriirieieeiee et 77
Current (Re)Initialization PrOCESS.......cccvcceieeriieieseesie e ecee e s 80
Modified (Re)Initialization ProCESS.........cccvciieiieiiiieiie e 81
Current KeyNote QUENY PrOCESS.ccoviverieeiiniesieesie e 89
Modified KeyNote QUENY PrOCESS.cccveiueeeesieieeiesieesieeeeseesee e sseessesnnens 92

Logica Flow of Functions for Parsing KeyNote into isakmpd.conf Syntax. 116
Logical Flow of Security Proposal Parsing and Loading Process with the

Added Dynamic Parameter Interface.oovoeveneneninenineeesee e 122
Security Proposal Default Loading ProCesSs..........cceevvevieieeieeciesee e 126
Security Proposal Duplicate Checking ProCess.ccovveeeneenenienseesiennnns 129

Xi

THISPAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF TABLES

Table 3.1. Possible Selector COMDINGLION.ccccvieereeesiere e ee e e eeens 35
Table M.1. Security Proposal SUMMAIYccceeiueiieieeie e eie e eae e sne e 309

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

The author would like to thank and acknowledge the following personnel:

- Dr Cythina Irvine, for her professiona guidance and direction, inspiring me to

go beyond my previously known limits and capabilities.
- Tim Levin, for his expert knowledge, guidance and patience.

- Evie Spyropoulou, for her patience, long hours of trouble-shooting, and expert

system knowledge, without which the research would have been seriously hindered.
- Bruce Allen his vast krowledge of Java.
- David Schiffett for his mastery of C.
- Eliane Christian for very soothing patience during a very stressful time.

- Last but certainly not least, my wonderful and beautiful wife, Amy, who
provided me with unlimited support and love during the performance of this research.

Without her support, none of my accomplishments would have been possible.

XV

THISPAGE INTENTIONALLY LEFT BLANK

XVi

l. INTRODUCTION

A. PURPOSE

Current implementations of 1Psec and KeyNote do not provide the granularity or
flexibility to adjust security controls to reflect real-world threat, information security
levels and priority requirements for data delivery. The purpose of this thesisisto analyze,
design and implement an interface that interacts with a Trust Management System
(KeyNote) to dynamically modify the protection of IPsec communications in response to
changing security threats, conditions and situations.
B. BACKGROUND

Information assurance and security have grown in concern and importance along
with our dependence on network communications and our connectivity across the
Internet. The DOD requires the ability to communicate securely within computer
networks via the Internet. Unfortunately the key Internet protocols were not designed to
provide security. As our dependence on the Internet has grown and its security

vulnerabilities have become apparent.

Typicaly a*penetrate-and-patch” technique is used to attempt to locate and fix all
system vulnerabilities when security is applied after development and implementation.
The wesakness in this approach is that to be 100% successful, you have to find all
vulnerabilities and patch each one. Thisis very costly in man-hours and not guaranteed to
be 100% effective. It is better to build security into a system from the ground up,
incorporating secure methodology into the design and implementation phase. For
example, formal methods may be used to mathematically determine the system’'s

assurance level.

One of the first successful attempts to secure network communication across an
insecure medium (Internet), was the Virtual Private Network (VPN). This involved the
establishment of a static secure connection between two peers, gateways or a
combination of both. The limitation of a smple VPN isthat it is not capable of applying a
complex security policy in which different applications and different users would require
different levels of security.

|Psec was developed to provide further granularity for the Internet Protocol (1P).
IPsec extends the IP Protocol to enable security for TCP/IP communications. IPsec
provides both secrecy and integrity services. A wide variety of choices are available
when establishing protected communications across the network. The appropriate choice
and combination of secrecy and integrity mechanisms will depend upon the “trust
relationships’ between the communicating entities. Those relationships are constrained
by the policy of each entity. Negotiation of policy and mechanisms takes place in the
context of the Internet Key Exchange (IKE) framework and the Internet Security
Association and Key Management Protocol (ISAKMP). However, IKE and ISAKMPD
do not provide a general mechanism for managing and incorporating security policy. In
order to ensure that IPSEC consistently meets local security policy needs of the user, a
Trust Management System is used to encode policy and support communications security
negotiation and management. (Thayer, R., Doraswamy,N., and Glenn, R , 1998)

A trust management system unifies the elements of security policy, credentials,
access control, and authorization. Applications can use the Keynote trust management
system to verify, through the compliance checker, whether a requested action is
authorized. (Matt Blaze, John loannidis, and Angelos D. Keromytis, Feb 2000)

The concept of Quality of Security Service (QoSS) provides the foundation for
implementation of security mechanisms, such as IPsec, that utilize a trust management
system to manage security according to policy. QoSS provides a means to manage
security services based on the requirements set by the user's requests, the system’s
security policy, the availability of system resources and the network environment. (Irvine,
C.E. and Levin, T, September 2000)

Currently, IPSEC and Keynote do not have the flexibility to adjust security
controls to adapt to changes in threat conditions, critical time transmissions, and network
congestion/traffic. By providing more granularity through parameterization in 1Psec,
these and other dynamic security requirements can be represented and accurately trigger
adjustments in security services.

C. EXPECTED BENFITSOF THE RESEARCH
By providing dynamic parameterization to IPsec, government and military

2

security systems will be able to automate security service adjustments according to
dynamic environmental parameter settings, such as INFOCON and THREATCON.

Currently, when a dynamic environmental value changes, security systems must be

stopped, reconfigured and executed to incorporate policy changes appropriately. With

dynamic parameterization, the security services will adjust “on-the-fly” in accordance

with local security policy. This research will provide a foundation for allowing IPsec

mechanisms to be managed under dynamicaly changing network conditions. The

additional granularity intended for the 1Psec mechanism will alow it to reflect both

Quiality of Security Service requirements and highly granular security policies.
D. RESEARCH OBJECTIVES
The objectives of this research are three fold:

Thoroughly study the current implementation of [Psec, specifically
OpenBSD 2.8, to gain an understanding of the security mechanism and its
components.

Design and develop a dynamic parameterization module, providing an
interface that will enable users to select values for “dynamic parameters,”
and ultimately result in an IPsec reconfiguration according to established
security policy.

Design and develop a method of demonstrating the results of this research,
specifically to users with limited knowledge of the OpenBSD operating
environment.

E. THE ROAD TO DYNAM IC PARAMETERIZATION

The following chapters will be provided to describe the work required to achieve

the objectives listed above: background, analysis, design, implementation, testing and

demonstration.

Chapter 11 Quality of Security Service(QoSS) — a brief introduction to
QoSS.

Chapter |11 IPsec Architecture —a review IPsec and its implementation
in OpenBSD 2.8.

Chapter IV_Design and Process — an outline and description of the design
and process phase of dynamic parameterization.

Chapter V. Implementation — a description of the methodology, and
actual implementation used to achieve the objectives, including pseudo
algorithms and source code.

Chapter VI Graphical User Interface Demonstration— a description of
the design and implementation of the GUI demonstration module.

3

Chapter VII Research Summary and Future Work —a summary of the
completed research and a discussion of future related work.

Il. QUALITY OF SECURITY SERVICE (QOSS)

A. INTRODUCTION

The challenge of providing users with consistent and reliable access to resources
in a distributed networking environment, such as across the Internet, has become a real
and troublesome problem for System Administrators and Resource Managers. The
former linear solution of providing resources by calculating and controlling the number
of users and types of terminals cannot be used outside the local network environment.
The Quality of Service (QoS) mechanism was developed to handle this management
problem. It provides a metric to measure and manage computational resources in an
effort to provide requested levels of service to customers. (Aurrecoechohea, C.,
Campbell, A., and Hauw, L. A., 1996) (Chatterjee, S., Sabata, B., Sydir, J., May 1998)

A similar challenge exists within the realm of network computer security. Here
the objective is to be able to fulfill user security requests and adapt and adjust
accordingly to environment security changes. This chapter discusses Quality of Security
Service (QoSS), the foundation and methodology of Quality of Service, its importance,
and costing mechanisms. The concept of dynamic parameters, Network Mode and
Security Level, is introduced. These parameters allow environmental conditions to be
mapped accordingly to security policy and ultimately determining the security
parameters used by the system. To support security system management, a costing
framework that will allow system administrators to properly orchestrate security
resources is also discussed. (Spyropoulou, E., Levin, T., and Irvine, C.E., December
2000)

B. QUALITY OF SECURITY SERVICE (QOS)

The Quality of Service (QoS) mechanism, see Figure 2.1, provides the ability to
manage network and computational resources in accordance with the user’s service
requests, availability of system resources, and the network environment. QoS in simple
terms, is a mechanism that establishes a contract between users and resource managers.
The service requests are based on the following abstract attributes: performance, accuracy
and precision. A user will typically request a certain level of service and the resource

manager will either approve the request or deny it, possibly offering another available
5

level of service. (Aurrecoechohea, C., Campbell, A., and Hauw, L. A., 1996)(Chatterjee,
S., Sabata, B., Sydir, J., May 1998)

The QoS mechanism may also be required to adjust negotiated levels of service as
the availability of resources increases or decreases. This will require the Quality of
Service (QoS) mechanism to govern al services provided to all users according to overall
system policy requirements. This allows the management system to control resources
and services as a whole in the event of a shift of prioritization or a loss or gain of
resources. Resource usage policies may vary, for example to allocate resources and
services equally or perhaps to provide a prioritized range of security services.
Ultimately, a user’s level of service may be modulated to accommodate the system’'s
policy and availability of resources. Of course, system policy level requirements will
dominate individual level requirement of services and resources. (Aurrecoechohea, C.,
Campbell, A., and Hauw, L. A., 1996)(Chatterjee, S., Sabata, B., Sydir, J., May 1998)

A further level of granularity to service level negotiations can be provided by
utilizing hard and soft requirements. Hard requirements must be met in order for the QoS
mechanism to accept the user’s request. Soft requirements permit requests to be satisfied
by a range of acceptable services. The soft variables may be adjusted during service to
accommodate other users or network environmental factors. (Aurrecoechohea, C.,
Campbell, A., and Hauw, L. A., 1996)(Chatterjee, S., Sabata, B., Sydir, J., May 1998)

Providing different ranges and levels of potential service enables a system
manager to effectively orchestrate system resources dependent upon requests, network

environment and available resources.

Quality of Service (QoS)

Resour ce M anager

Communications .’

L * Communications
Negotiation .

Negotiation

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'

Negotiated communication Channel

Figure2.1. Quadlity of Service (QoS).

C. QUALITY OF SECURITY OF SERVICE (QOSS)
With the increased interest and implementation of computer security systems,

specifically their effectiveness and impact on operational functionality, mechanisms to
monitor and mediate security controls are required. In the QoS model, resource allocation
is adjusted to meet user requests under changing network environment and resource
availability conditions. Similarly, Quality of Security Service (Qo0SS), see Figure 2.2
provides a mechanism to manage security services to meet requirements set by the user's
requests, system’s security policy, availability of system resources and network
environment. (Irvine, C.E. and Levin, T., September 2000)

Similar to the modulation of resources to support QoS, security services can be
defined in terms of user and system requirements, network environment factors and
available resources. Without a range of security services, a user is faced with the rigid
and limited choice of “al or nothing”: security or no security. Historically, security
services have been provided in such a static manner. (Spryropoulou, Evdoxia, Agar,
Chris, Levin, Timthoy, Irvine, Cynthia, January 2002) Quality of Security Service

(Q0SS) provides a more flexible solution to the provision of security services. The

7

security resource manager and/or the security system can adjust security service to meet

user requirements, system security policy and network environment constraints. (Irvine,
C.E. and Levin, T., September 2000)

Security systems and managers can maintain overal control of the security
mechanism through QoSS *“system security policies” These policies dominate the
individual “user security requirements.” Specifically, they define al authorized

operations per user, system, application , etc.

QoSS has severa mechanisms to handle security variances. A security variance
exists when security policies may be enforced utilizing a specific range of attributes.
Therefore, based on the policy parameters, the attributes used to enforce the security
policy may differ according to selection criteria. Fixed requirements are used to set
minimum level acceptable security standards. A range of security settings meeting or
exceeding this minimum level can be provided. For example a system may utilize SHA
as a minimum level authentication algorithm for al message handling. Further
granularity in support of confidentiality could be applied to messages by users or
applications by selecting an encryption algorithm from a provided range. Other examples
of security attributes that may be used are: assurance level, key length or security
attribute expiration date stamp. (Irvine, C.E. and Levin, T., September 2000)

Quiality of Security Service (Q0SS)

Security Resour ce M anager

&

¥,

Secure Communication _e*
Negotiation *

"..SecureCommunication
" Negotiation

s

B

Negotiated range of secure communication attributes User B

Figure2.2. Quality of Security Service (Qo0SS).

8

1 Managing Quality of Security Service (QoSS)

Inevitably, security mechanisms result in a cost to the user, system and resources.
Whether in the form bandwidth, algorithm processing time, overhead, or funds, the cost
of security is a challenging concern to resource managers. A costing framework is
required to map security service resource consumption to available resources, ultimately
enabling a management system to efficiently and effectively handle security service

costs.

Security services, as previously described, may utilize high level services and
consume lower level resources in a system. High level services include, for example,
nonrepudiation, auditing, authentication, encryption, or intrusion detection. Low level
resources include memory, bandwidth, or processor time. Further, each security service
will require a governing policy, consisting of specific rules that determine how and when
to use the service. Therefore each network task associated with QoSS can be mapped to a
vector of security requirements directly associated with the security services the task
requires. (NPS-CS-02-001, January 2002)

1.1 Dynamic Parameters

Government and DOD organizations utilize a variety of dynamic parameters to
define a predefined response of specific actions according to policy. Examples include
INFOCON and THREATCON levels. In order for a security mechanism to be fully
functiona within the DOD and Government infrastructure, it has to be able to incorporate
the dynamic parameters into the security setting decision making process. A changein
an INFOCON or THREATCON level should have an immediate effect on attributes and
settings in a security mechanism. By introducing a dynamic mechanism, a system can
modulate its security settings in response to these dynamic parameters. Security level and
network mode, defined in the next section, have been chosen as two abstract dynamic
parameters that govern changes to security attributes as defined in the an organization's
security policy. (NPS-CS-02-001, January 2002)

By developing and implementing a security mechanism that can dynamically

adjust in accordance with a change to network modes and/or security levels, the users and

9

managers do not have to be concerned with the fine granularity and low-level complexity

involved in adjusting and selecting appropriate security attributes.

1.1.1 User Choicesfor Security Levels

Security levels are a common metric used in the government and DOD to
distinguish authorization for classified information. Common levels include Top Secret,
Secret, Classified and Unclassified. Each of this levels correspond to different governing
policies and requirements associated with the threat to national security by the disclosure
of information to adversaries. Likewise, security levels, as defined here for proof of
concept, represent an increasing requirement for stronger security (e.g. encryption and

authentication algorithms).

Network security policies will require a range of maximum and minimum
security levels. Minimum security levels set the lowest acceptable security attributes and
maximum security levels establish a ceiling on the use of available security resources.
Intersections of policies require further granularity in security settings to satisfy all
governing users and systems. A user may also desire to selected a higher level of security
than the predefined minimum. (NPS-CS-02-001, January 2002)

A user or application, however, may quickly become overwhelmed with
the security setting details, potentially resulting in degraded security or performance. By
developing security definitions that encompass detailed security settings required by
users or applications, the complexity of the selection process for the security settings can
be simplified to a reasonable level. One approach would involve the use of the following
Network Security levels: high, medium and low. (NPS-CS-02-001, January 2002) High
security level would utilize strong levels of security attributes, medium level, moderate

level of security attributes, and low level, low to no security attributes.

By implementing this approach the system security resource manager or
security engineer is responsible for presetting security variables and ranges in accordance
with choices offered to users or applications. A mapping of allowable security settings to
security levels providing a range of selection or specific values will be required to
properly enforce the system security policy. (NPS-CS-02-001, January 2002)

10

1.1.2 The Notion of Network M odes

Networks exist in a variety of states, providing users and systems with
varying levels of service. On one occasion the network may experience heavy levels of
traffic resulting in a poor performance. At other times the network may be limited in the
availability of resources due to maintenance, and at other times the network may be
performing at its optimum level. To fully incorporate the performance and reliability of

the network into a security mechanism, the notion of network modes is introduced.

There are numerous Situations in which a network security policy will be
required to dynamically change to properly address the current operationa threats and
needs, as well as the availability of resources and network performance. In the midst of
a highly sensitive intelligence operation, a transmitted report will require the highest
possible security to ensure the information and the source remain protected. In another
scenario, a unit confronted with serious emergency will require the fastest possible
transmission, and may not be concerned with transmission protection. (NPS-CS-02-001,
January 2002) Therefore a requirement exists for a dynamic security mechanism that can
appropriately adjust to meet the needs of the system, users or applications. One approach
is to use the following network modes: normal, impacted, and crisis. Normal mode is
defined as ordinary operating conditions with normal traffic load and no heightened
threat conditions. Impacted mode may be defined when the network/system is
experiencing high levels of traffic and therefore certain security selection may not be
available due to efficiency constraints. Emergency mode may be defined as a situation
that requires the highest level of security or the lowest level dependent on the situation
and policy. (NPS-CS-02-001, January 2002)

1.2 Mapping Abstract Parametersto Security Mechanism

A mapping of abstract dynamic parameters to resident security mechanisms is
required to properly enforce policy decisions. For example, network modes may be
mapped to security level ranges and ultimately to security attributes and settings. The
security resource manager and security engineer would define the network modes and
security levels to provide the users and applications with appropriate security service as
trandlated into QoSS choices. Once defined, the complexity of the security mechanism

11

and security attribute selection is transparent to the user. (See Figure 2.3)

Mapping Security Attributesto Security Policy

Network Mode Security Level Security Attributes
L ow ENCRYPTION: NONE
AUTHENTICATION: MD5
Nor mal Medium ENCRYPTION: DES
AUTHENTICATION: MD5
High ENCRYPTION: 3DES
AUTHENTICATION: MD5
. ENCRYPTION: NONE
Crisis Low AUTHENTICATION: NONH
o ENCRYPTION: NONE
Medium AUTHENTICATION: NONE
. ENCRYPTION: DES
High AUTHENTICATION: MD5
L ow ENCRYPTION: 3DES
AUTHENTICATION: MD5
- ENCRYPTION:3 DES
I mpacted Medium AUTHENTICATION: SHA
: ENCRYPTION: AES
High AUTHENTICATION: SHA
Broad Granularity Fine

System Admin/ >
Security Experts

Figure2.3. Mapping Security Attributes to Security Policy.

Users

1.3 Cogting for QoSS

As mentioned earlier, use of security services has a direct impact on systems,
users and/or applications. The cost may differ depending upon the actua service
provided in relation to funding, bandwidth, processing time, packet overhead, or memory
requirements. Providing resource managers, users, or applicatiors with a costing
framework for security services will enable them to make appropriate security selection
according to their needs and the availability of resources. In some cases a user may
decide to forego a certain level of security as a result of the impact it may have on
bandwidth availability. Likewise a user may decide to increase security after consulting
the costing framework. (NPS-CS-02-001, January 2002)

A costing framework as described above, see Figure 2.4, will require a matrix of
cost expressions relative to security services and security attributes. Further granularity

will be required to incorporate system resources including existing loads on the
12

processor, memory and network, as well as any limitations pre-established by security
levels and network modes. (NPS-CS-02-001, January 2002) A costing framework model
can provide the user with general information about the impact of certain security settings
(network modes/security levels). The complexity of the costing calculation and reference

mapping would remain transparent to the user.

The development of a detailed costing framework is beyond the scope of this

thesis but is described here to lay the groundwork for future efforts.

Costing Framework Model

| Security Policyl
Delay Bandwidth H'oo&w ng Time
’ - ’ Security Selections

O Normal ({3 High
a Impact O Medium

Mechanism

Figure2.4. Costing Framework Model.

D. CONCLUSION

Quality of Security Service (QoSS) stems from the origins of Quality of Service
(Qo0S), providing a mechanism to access security services in accordance with the user and
the system requirements and the network environment. Security services can be defined
in via various levels of granularity of integrity, confidentiality, non-repudiation,
authentication, etc. To provide further integration of security mechanisms into the
surrounding environment, dynamic parameters, i.e. environmental related variables with
a defined range of values, can be mapped to adjustable levels of security protection in

13

accordance with policy. In order to manage the security mechanism’'s impact on
resources and services, a costing framework is required to provide system and security

managers with a tool for monitoring and adjusting security services.

Internet Protocol Security (IPsec), a security mechanism utilized to provide a
range of security protection per packet at the network layer, is an ideal proof of concept
platform to demonstrate how a specific security mechanism can be modulated to provide
different levels of security response in accordance with QoSS. The following chapter will
explain in detail the IPsec system architecture to provide the reader an understanding of

the security mechanism.

14

1. SYSTEM ARCHITECTURE

A. INTRODUCTION

In this chapter | will discuss the origins and architecture of 1Psec. The roots of
IPsec spawned from the growth in popularity and dependency on network
communications. It became quickly evident that all information sent across the Internet
was susceptible to theft and modification. A means of protecting network packets soon
became critical to most business and government organizations. The first attempt
involved a smple “protect-all” approach to network security, Virtual Private Networks
(VPN). However, with the added resource cost of network security on resources, this was
not aways the most efficient solution. |Psec introduced the ability to provide a range of
security services through predefined set of security attributes ultimately defined by a
security policy.
B. OVERVIEW OF IPSEC

The Internet Protocol (IP) has become the norm for network electronic
communication in business, government and private life. However, the very definition of
IP is fraught with vulnerabilities. 1P packets have no inherent security. (Doraswamy,
Naganand and Harkins, Dan, 1999, 41-55) Therefore, it is quite atrivial matter to spoof,
modify and inspect an IP packet without authorization from the sender. IPsec was
developed to address these problems by defining a security mechanism for sending data

across an insecure medium.

Initial attempts at developing IP Security such as Virtual Private Networks
(VPN), see Figure 3.1 resulted in very rigid security systems and a binary security choice:
security or no security. There were no intermediate security choices. 1Psec can provide
users and systems with multiple selections of security attributes, which can enable, for
example, the security mechanism to adapt to changing needs, all in accordance with the
security policy.

15

I Psec vs. VPN Security M echanisms

| Psec VPN

No Security
Security

Figure3.1. IPsecvs. VPN Security Mechanisms.

IPsec was designed to provide an efficient and effective cryptographic security
mechanism for IP version 4 and IP version 6. Refer to Figure 3.2. The mechanism
provides the following services: access control, connectionless integrity, data origin
authentication, protection against replays (a form of partia sequence integrity),
confidentiality (encryption), and limited traffic flow confidentiality. These services are
applied at the IP layer, providing security for IP and/or upper layer protocols. (Kent, S
and Atkinson, R, 1998) The cryptographic agorithms are applied in accordance with
system security policies that are defined within 1Psec.

The IPsec implementation in OpenBSD version 2.8, researched in this thesis,
consists of the following components (see Figure 3.2): Security Policy Database (SPD),
Security Association Database (SAD), Internet Security Association and Key
Management Protocol (ISAKMP), KeyNote, and Internet Key Exchange (IKE). A
Security Association is defined as negotiated security terms for communications between
two or more peers. The Security Policy Database (SPD) defines the authorized security
associations. Security Association Database defines the security associations that have

been established. The Internet Security Association and Key Management Protocol
16

(ISAKMP) define a framework for security association management and key negotiation.
KeyNote is the trust management component that handles the mapping of policy to
security attributes. Internet Key Exchange is the mechanism used to negotiate security

associations with peers.

The IPsec as present in this research exists independent of ISAKMP, KeyNote
and IKE (all described later) in our operating systems and environments. For the sake of

consistency and relevancy to the research provided, | will cover only the IPsec version
specific to OpenBSD version 2.8.

Changesto IPsec security variables and rules can be managed via Keynote. Local
rules and policy are stored initially in the ISAKMP database (isakmpd.conf). During
IPsec initialization, the information stored in isakmpd.conf is loaded into memory and
cached in the SPD. Peer and service security associations and rules are stored initialy in
the Keynote Database and cached in the Security Association Database (SAD) as security
associations (SA) once established through a successful peer negotiation (discussed
later). (Doraswamy, Naganand and Harkins, Dan, 1999, 57-79)

The IPsec process consists of two phases. Phase One involves the authentication
among the peers and the negotiation of security parameters for Phase Two
communications. The process of dynamically authenticating peers is managed according
to the Internet Key Exchange (IKE) protocol. Phase Two is the actual authenticated and
protect communication between peers. (Doraswamy, Naganand and Harkins, Dan, 1999,
57-79)

IPsec can be used on a variety of system architecture models. host-to- host,
gateway-to-gateway and gateway-to-host/host-to-gateway. (Doraswamy, Naganand and
Harkins, Dan, 1999, 57-79)

OpenBSD IPsec incorporates the concept of trust and security policy management

by implementing KeyNote. The research performed in this thesis utilizes the OpenBSD

| Psec mechanism as a model for discussion and implementation.

17

e | Psec Ar chitecture
E User Mode
. |
Kernel <
I[P Output isakmpd.conf

Routine

IP Input
Routine

Figure3.2. IPsec Architecture.
(After: Blaze, Matt, loannidis, John, and Kermoytis, Angelos D., February 2001)

C. IPSEC ARCHITECTURE

1 Security Services Provided by | Psec

The overal challenge of 1Psec isto provide confidential, integrity, nonrepudiation
and availability to network communications. |Psec provides the following security
services that may be combined to meet these requirements. origin authentication, data
integrity, data confidentiality, anti-replay protection and limited traffic confidentiality. It
utilizes two methods to protect IP packets. Encapsulating Security Payload (ESP)
providing data integrity, confidentiality and anti-replay protection; and Authentication
Header (AH) providing only data integrity and anti-replay protection. In addition, |Psec
can provide packet protection using transport or tunnel mode. Transport mode is used to
protect upper level protocols. Tunneling mode is used to protect the entire packet
(Doraswamy, Naganand and Harkins, Dan, 1999, 57-79) Each mode can be used with
either ESP or AH, so there are four possible |Psec packet formats, each of which will be
explained in further detail below.

18

1.1 Encapsulated Security Protocol (ESP)

ESP provides data packets with confidentiality, integrity, source authentication
and protection against replay attacks. This protection is accomplished by: (Doraswamy,
Naganand and Harkins, Dan, 1999, 81-89)

- Inserting a new header after the IP Header but before the data of the
packet,

- Appending atrailer to the packet

- Inserting IP protocol 50 to identify ESP. This protocol is used to enable
Firewals and routers to distinguish IPsec packets for processing and
forwarding purposes.

Confidentiality and authentication are provided cryptographically. Encryption
involves the conversion of datainto unreadable form by using a reversible transformation
(encryption agorithm i.e. DES, AES, IDE, etc.) Authentication is the process of
cryptographic identity and integrity verification of transmitted data (authentication
algorithms SHA MD5 and RIPEMD). [Cryptography and Network Security Principles
and Practice] ESP can use any combination of encryption and authentication algorithms,
as long as they are supported by the security mechanism. ESP can also be used without
an encryption algorithm, or without an authentication algorithm. ESP without both
encryption (NULL cipher) and authentication (NULL authenticator) algorithms, provides
no security and results in a pointless drain of system resources, and therefore, typicaly is
not supported. (Doraswamy, Naganand and Harkins, Dan, 1999, 81-89)

The ESP packet, ESP header, original packet, and ESP trailer are encrypted in the
following manner: (see Figure 3.3) (Doraswamy, Naganand and Harkins, Dan, 1999,
81-89)

- The ESP header is not encrypted. This is done to alow for recipients and
gateways (types of IPsec configurations discussed later) to process the
packet according to IP Address (part of the Security Parameter Index,
SPI).

- The origina Datais encrypted

- The ESP Trailer is partialy encrypted to allowing for data processing. The
unencrypted portion on the trailer includes the Security Parameter Index
(SPI) and destination IP address to enable SA identification, and the
sequence number, authentication data and padding (if required). The
justification for unencrypted portions will become clear in a moment.

19

ESP- Protected | P Packet

IPHEADER

ESP HEADER

AUTHENICATED

ENCRYPTED

ESP TRAILER

Figure3.3. ESP- Protected IP Packet.
(After: Doraswamy, Naganand and Harkins, Dan, 1999, 49)

The order of processing for an ESP-protected packet on receipt is:

- Verify the sequence number

- Verify integrity

- Decrypt the data

ESP uses Cipher Block Chaining (CBC) and Initialization Vectors (1V) to
strength its provided security. CBC is used to mask patterns of identical blocks within
the same datagram. An Initialization Vector (IV) is a non-secret binary vector, which is
different for every datagram, used as initialization input for encryption algorithms and to
synchronize cryptographic equipment. By using CBC and IV, identical plaintext payloads
will be encrypted to different cipher text payloads. The cipher text output is also random
in appearance, a characteristic of a good cipher, and embeds the plaintext with the
previous cipher ultimately strengthening the entropy of the following plaintext input to
the cipher. See Figure 3.4. (Simpson, W. A., March 1999)

20

Encrypting and Decrypting using CBC and IV

Encrypting Decrypting

Plaintext#1] Plaintext#2] text#] =" text#l

—> XOR ~J» XOR —) Encrypt II<9_L‘> Encrypt

! ! 0 ﬂ
m— Encrypt E@ Encrypt C—>XOR —=J» XOR

J U g g

s Plaintext#1] Plaintext#1]
text#l text#2

Figure3.4. Encrypting and Decrypting using CBC and IV.
(After: Simpson, WA, March 1999)

A quick review of the CBC/IV encrypting and decrypting process follows.

The process of encrypting using CBC and IV is: (Simpson, W A, 1999, 1-3)
- An 1V isused in an XOR operation with the first block of plaintext.

- The encryption key is used to encrypt the result of the XOR operation and
generates a cipher text block.

- For the next successive blocks of plaintext, the previous ciphertext is
XOR'd with the plaintext

Conversely, the process of decrypting using CBC and IV is simply the reverse:
(Simpson, W A, 1999, 1-3)
- The encryption key is used to decrypt the cipher text block. - An IV is
used in an XOR operation with the first decrypt block of text.

- For the next successive blocks of cipher text, the previous cipher text is
XOR’d with the decrypted block.

In transport mode, ESP protects the upper layer protocol by inserting an ESP
header between the IP Header and the upper —layer protocol. The upper-layer protocol
and data are then encrypted. (Doraswamy, Naganand and Harkins, Dan, 1999, 81-89) In

21

tunneling mode, ESP protects the entire data packet by embedding the packet in between
the ESP header and trailer. A new IP header is then generated and added to the packet
(Doraswamy, Naganand and Harkins, Dan, 1999, 81-89)

1.2 Authentication Header (AH)

The Authentication Header (AH) is utilized to maintain integrity of data,
authenticated the sender, and provide (optionally) nonreplay protection. However, it
does rot provide confidentiality. Structurally AH is simpler than ESP packets. It adds a
header but no trailer to the data packet, and al information in the AH packet is
unencrypted. There is no need for padding, a pad length indicator or an initialization
vector. AH can be used alone within an SA or in conjunction with ESP in a separate SA.

AH packets are composed of the following: (see Figure 3.5) (Doraswamy,
Naganand and Harkins, Dan, 1999, 91-98)
- Original IP Header

- AH Header. This contains the SPI which is used to locate the SA in the
SADB during receipt processing, protocol field number 51, sequence
number which is used to defend against replay attacks, and authentication
datafield (digest of keyed MAC).

AH- Protected | P Packet

EEEEEEEE—

IP HEADER

AH HEADER

AUTHENTICATED

DATA
AH TRAILER e

Figure3.5. AH-Protected IP Packet.
(After: Doraswamy, Naganand and Harkins, Dan, 1999, 51)

22

In transport mode, AH protects end-to-end communications by inserting the AH
header immediately following the |P Header and then authenticating the entire packet. By
authenticating the entire packet, the recipient can be ensured that it came from the actual
sender and was not captured, modified and resent. (Doraswamy, Naganand and Harkins,
Dan, 1999, 91-98)

In tunneling mode, the AH encapsulates the protected datagram and alds an
additional IP Header before the AH Header. (Doraswamy, Naganand and Harkins, Dan,
1999, 91-98)

1.3 IPsec Configurations

The materiad in this section is referenced from the following: (Doraswamy,
Naganand and Harkins, Dan, 1999, 49-80)

IPsec can be utilized to support three network configurations as shown in Figure
3.6.

The peer-to-peer configuration is used to support secure communication between
two IPsec end systems. In this situation, end systems would need a locally managed

| Psec mechanism to manage the security mechanism and policy.

The peer-to-gateway configuration is used to support an IPsec standalone user
communicating securely to an IPsec gateway or router. An IPsec gateway or router is an

| Psec mechanism that supports multiple users or an internal network.

The gateway-to-gateway configuration is used to support secure communication

between two or more | Psec gateway's or routers.

23

| Psec Configurations

Peer -to-Peer ‘ @ ."
®
Peer-to-Gateway ‘< »B ‘
®
® ®
Gateway-to-Gateway] | [TITIr N o
® ®

Unsecure Communications]
Figure 3.6

Figure3.6. IPsec Configurations.
1.4 Useof Transport and Tunnel Modes

The materia in this section is referenced for the following: (Doraswamy,
Naganand and Harkins, Dan, 1999, 49-80)

As mentioned earlier, 1Psec utilizes two modes for transport and tunneling. Refer

to Figure 3.7.

Transport mode is used typically in the peer-to-peer configurations. There is no
attempt to protect the identity of the sender and / or receiver when using this mode. The

security emphasis is on the upper level protocols.

Tunnel mode is typically used with peer-to-gateway, gateway-to-peer, and
gateway-to-gateway configurations. The security emphasis is on protecting
(confidentiality and/or integrity) the entire packet including the sender/receiver identity.
The original packet source and destination 1P addresses are protected via encryption
and/or authentication (by means of insuring integrity). An additiona IP
source/destination header is provided to the appropriate 1Psec tunnel recipient. At the
gateway, the packet is unwrapped and the inner packet is forwarded to the ultimate end

24

system recipient.
| Psec Transport and Tunnel M odes

Transport Mode Tunnel Mode

IPHEADER TUNNEL IPHEADER
IPSEC HEADER IPSEC HEADER

IP HEADER

TCP/UDPHEADER

TCP/UDP HEADER

DATA DATA

Figure3.7. IPsec Transport and Tunnel Modes.
(After: Doraswamy, Naganand and Harkins, Dan, 1999, 57-80)

15 Security Associations (SA)

A Security Association (SA) can be referred to as a “simplex” connection path
established to provide security services to IP packets. The “simplex” path requires the SA
to represent either an AH or an ESP but not both, and only for one communication
direction. If additional services are desired another SA will be required. Likewise other
communications paths (such as a return path to the originator) will require a separate SA.
As aresult, SA’s are uniquely identified by the security parameter index (SPI), ESP or
AH security protocol and the destination | P address. (Kent, S and Atkinson, R, November
1998) A secure communications path may require multiple SA’s to ensure all
requirements are met.

| Psec requires that: (Kent, S and Atkinson, R, November1998)
- A host or end system MUST support both transport and tunnel mode.
- A security gateway is required to support only tunnel mode.

25

1.6 Combining Security Associations

It is important to note that the 1Psec mechanism only allows one security protocol,
AH or ESP to be used with an SA. However, there may be times when a security policy
cals for a combination of security services for a specific communications path that
requires more security attributes than is possible with only one SA. Therefore multiple
SAs are required to properly achieve the desired level of security as mandated by the
security policy. The use of multiple SAs is referred as a security association bundle or
SA bundle. The order of SA implementation sequence (ESP or AH first) is important and
is defined by the security policy. (Leiseboer, John, 2001)

There are two ways to implement an SA bundle: transport adjacency and iterated

tunneling.

Transport adjacency is the process of using more than one security protocol on the
same | P datagram without utilizing tunneling. Only one level of combination is allowed.
Additional nesting will not result in further security since al the 1Psec processing will be
performed at the same instance at the destination. Figure 3.8 provides an example of
transport adjacency where first ESP provides confidentiality of IP data using encryption.
Then AH is used to add authentication to the datagram. When using transport adjacency,
the ordering of the applied SA bundle is important. As with the provided example, if AH
and ESP are used in conjunction, AH should be used as the first header after |P after ESP
security has been applied. This is justified by the fact that data integrity should be
performed on as much packet data as possible to achieve the desired security effect of
packet authentication. (Leiseboer, John, 2001)

Iterated tunneling is the process of applying multiple layers of security protocols
through IP tunneling. This enables multiple levels of nesting. With each tunnel being able
to originate or terminate at a different IPsec sites along the secure communications path.
Figure 3.9 show an example of iterated tunneling, both security end points are different.
This AH SA protects al traffic flowing between the two gateways. Host A and Host B
are provided security via an ESP SA. With iterated tunneling, various orderings of AH
and ESP are possible and sensible when bundling SAs. (Leiseboer, John, 2001)

26

Transport Adjacency

Host A — Host B

Security Securlty
E Gateway % GaIaNay %
A
’/

— —
\ ESP Security

N

AH Security

1P TCP

Header AH| ESP Header Data

Figure3.8. Transport Adjacency.
(After: Leiseboer, John, 2001)

Iterated Tunneling

Host A — Host B

Security Securlty
E Gateway Intern GaIeway %

A
— —— —

\ AH Security
Y

ESP Security

1P 1P TCP

Header ESPl AH Header | Header Data

Figure3.9. Iterated Tunneling.
(After: Leiseboer, John, 2001)

27

1.7 Security Policy

A security policy defines the rules and regulations of a system. Specificaly what
users are allowed to access to systems, applications, and data, what times during the day
are they allowed access (security system administrator may define only working hours
access to users), and what actions are users authorized to perform on the data
(permissions: read, write and/or execute). The challenge is to present a seamless approach
to controlling each user’s actions, in regards to the security policy. The system security
policy, for the purposes of this thesis, can be defined in terms of IPsec security

parameters. (Blaze, Matt, loannidis, John, and Keromytis, Angelos D, February 2001)

Security Policy is represented in IPSec via the following: (see Figure 3.10)
- Application Layer: (Blaze. Matt, loannidis, John, and Keromytis,
Angelos D, February 2001)
- <ISAKMPD.CONF> —initial peer security policy configuration
used in IKE Phase | IKE & initial Phase Il SA negotiation
- < KeyNote/ISAKMPD.Policy > — Local security policy
defined in Keynote semantics — queried during | PSec negotiation.
— Kernel Layer:
- Security Policy Database (SPD)— cached security policy
- Security Association Database (SAD) — cached valid

security association (SA)

28

| Psec Security Policy

Kernel Layer Application Layer

SADB | sakmpd.conf

> <
KeyNote
SPDB |sakmpd.polic

Figure 3.10. 1Psec Security Policy.
(After Blaze, Matt, loannidis, John and Keromytis, Angelos D., February 2001)

1.8 Security Policy Database (SPD)

The IPsec mechanism manages security policy efficiently by implementing a
Security Policy Database (SPD) in the Kernel to allow for quick reference by input and
output processing modules (discussed later). The Security Policy Database (SPD) is
implemented and maintained by a user or system administrator, or by an application
constrained by pre-defined rules or policy. In general, packets are either afforded IPsec
security services, discarded, or allowed to bypass |Psec, based on the applicable security
policies found in the SPD. (Kent, S and Atkinson, R, November 1998) SPD is
populated/updated by either manual keying or daemons (IKE/ISAKMPD/Photuris). See
Figure 3.11.

29

| Psec Security Policy Database (SPD) Populating M echanisms

e)
v f Manual Keying

Implemented as extension

PF_KEY
toroutingtable interface

Key Management
i Daemons

Figure3.11. 1Psec Security Policy Database (SPD) Populating Mechanisms.
(From: NPS-CS-02-003, January 2002)

Using one of these methods, the system’s security policy is trandated into
database entries. The entries define the data traffic to be protected, what security
mechanism should be used, and with whom the system is authorized to speak. For each
packet entering or leaving the system, the SPD is queried to ensure the proper security
parameters and measures are applied. (Doraswamy, Naganand and Harkins, Dan, 1999,
57-79)

An SPD entry specifies one of three possible actions regarding all traffic that
matches that entry:
Discard, implying that that the packet should not be allowed in or ouit.

Bypass, implying that no security services should be applied nor should
any security services be expected.

Protect, implying security services are required for outbound and inbound
packets.

IPsec policy is mapped to IP traffic via “selectors’. Information stored in SPD
may be located by any of the following search selectors. (see figure 3.12) source IP
address, destination | P address, Name (specific user or system), Protocol, and ypper layer

30

ports. (Doraswamy, Naganand and Harkins, Dan, 1999, 57-79) Selectors can be either
specific values, ranges of alowed values or wild cards. (Kent, S and Atkinson, R,
November 1998)

The following are the in the SPD:
- Source IP —the source I P address in accordance with the security policy.
- Source Port — the source port to which the security policy applies.
- Destination IP — the destination IP address in accordance with the security
policy.
- Dedtination Port — the destination port to which security policy applies.
- Name — used to bind a policy to a specific user or system.
- SA |P— pointer to active SAs
- Protocol Type— TCP/UDP
- Policy Action:
- Require — Strict condition. If no SA exists, drop the packet.
- Acquire — Set-up SA and continue communications without
protection until IPSEC SA takes effect.
- Permit — Bypass IPSEC process— exception for specific packet
characteristics.

- Deny — Drop the packet without further processing.

In generd, the first qualifying SPD entry found will be used to determine the
disposition of the current packet. The ability to use different selectors in the SPD allows

| Psec systems to provide flexible policy mechanisms.

31

Security Policy Database (SPD)

SPD

Source| Source| Dest Dest |Protocol SA Protocol | Policy |Direction
IP Port IP Port 1P Type Action
TCP/ TCP/ |-Require |
UDP UDP |-Acquire|
. -Out
-Permit
-Deny

Figure
3.12. Security Policy Database (SPD).
(From: NPS-CS-02-003, January 2002)

19 Security Association Database (SAD)

After an SA is established for communication with a remote host, the SA is
“cached” in the SAD. Each entry in the SAD represents one SA. Refer to Figure 3.13.
The SAD isfirst consulted for both inbound and outbound traffic to determine processing

requirements for the packets. If no SA is found (e.g. expired or nonexisting SA in the
SAD) Phase Il IKE negotiations are initiated with the remote host. (Kent, S and
Atkinson, R, November 1998)

Inbound packets are processed by indexing SA’s in the SAD with each of the
following packet fields. (Kent, S and Atkinson, R, November 1998)

Outer Header's Destination |IP address: the I1Pv4 or [IPv6
Destination address.

IPsec Protocol: AH or ESP, specifies the IPsec protocol to be
applied to the traffic on this SA.

SPI: the 32-bit value used to distinguish among

32

SAsterminating at the same destination and using the same
| Psec protocol.

Outbound packets are processed by using security parameter indexes (SPI), to
index SA’s in the SAD and the SPD. Thisis donein order to alow SA bundles, in which
a policy entry in the SPD involves multiple SAs in a specific order. (Kent, S and
Atkinson, R, November 1998)

An entry in the SAD will contain the value or values, which were created during
peer negotiations. These fields can have the form of specific values, ranges, wildcards, or
an "OPAQUE" (inaccessible due to fragmentation or encryption). The ESP and AH
Protocol fields form an entry may contain NULL for one or the other but not for both.
These values are used by the sending peer to determine the SA’s required for packet
processing. The receiving peer uses these values to check that the inbound packet adheres

to the receiver’s security policy. (Kent, S and Atkinson, R, November 1998)

The following SAD fields are used in 1Psec processing:
- Sequence Number Counter: a 32-bit value used to generate the
Sequence Number field in the AH or ESP headers.
- Sequence Counter Overflow: aflag indicating whether overflow
of the Sequence Number Counter should generate an auditable
event and prevent transmission of additional packets on the
SA.
- Anti-Replay Window: a 32-bit counter and a bit-map used to determine
whether an inbound AH or ESP packet is areplay.
- AH Authentication algorithm, keys, etc.
- ESP Encryption algorithm, keys, IV mode, 1V, etc.
- ESP authentication algorithm, keys, etc. If the authentication service is
not selected, this field will be null.
- Lifetime of this Security Association: a time interval after which an SA
must be replaced with a new SA (and new SPI) or terminated, plus an
indication of which of these actions should occur.

- |Psec protocol mode: tunnel, transport or wildcard.

33

- Path MTU: any observed pathMTU and aging variables.

SAD: Security Association Database

ahash tablein Kerndl

PF_KEY

Implemented as '
interface

| SA identifier set for incoming policy matching

/_/%
SRC [IPSEC| SPI Seq | Seq Flag| Anti- AH ESP [Lifetime| IPSEC| Path
IP Proto Counter| overflow| replay info info info P modg MTU

| SA identifier set for outgoing policy matchi ng|

DEST| IPSEC| SPI Seq | Seq Flag| Anti- AH ESP |Lifetime| IPSEC| Path
1P Proto Counter | overflow| replay info info info P modg MTU
SA identifier tuple

A
e N

SRC | IPSEC| SPI Seq | Seq Flagl Anti- AH ESP [Lifetime| IPSEC| Path

1P Proto Counter| overflow| replay info info info P modg MTU

1.10

Figure3.13. SAD: Security Association Database.
(From: NPS-CS-02-003, January 2002)

Sdlectors

“Selectors’ are parameters that are used to locate or select a SA or SA bundlein
the SPD and SAD. A selected SA (or SA bundle) may be very detailed or generdl,
depending on the selectors used. Traffic between two peers/gateways may only require a

single SA in

each direction for a uniform set of services. Or traffic between

peers/gateways may Uutilize a series of SA’s to handle different security services for

different supported applications. The following are the IPsec selector parameters. (Kent,
S and Atkinson, R, 1998)

- Source Address — can be an address range, network prefix, wild
card or a specific address.

- Destination Address — can be an address range, network prefix,
wild card or a specific address.

- Name — used to identify a policy associated with an authorized

user or system.

cards
Data Sensitivity Level

Protocol — the transport protocol.

Upper-Layer Ports— may use individual UDP or TCP ports or wild

The following table describes the possible selector expression combinations in
SAD and SPD: (Kent, S and Atkinson, R, November 1998)

Field Traffic Value SAD Entry SPD Entry
src addr sngle IPaddr single range,wild single range, wild
dst addr single |Paddr single range,wild single range,wild

Xpt protocol

Xpt protocol

single range,wild

Single, wildcard

src port Single src port single range,wild Single, wildcard

dst port Single dest port single range,wild Single, wildcard

user id Single user id single range,wild Single, wildcard

sec. labels Single value single range,wild Single, wildcard
Table3.1. Possible Selector Combination.

(After: Kent, S and Atkinson, R, 1998)
1.11 IPsec Processing Modules

The IPsec mechanism uses input and output modules, a processing module
and a SA set-up module to receive, send, and process |Psec packets, and setup SA as
required, respectively. The following sections will describe modules.

1111 | Psec Input Module

IPsec’s input routine provides an interface and buffer to all
incoming message traffic. The packets are filtered accordingly and are either (1) passed
to the appropriate upper level process or interna user, (2) used to generate an IPsec
negotiation with a peer or, (3) discarded. See Figure 3.14.

The following is a pseudo code representation of the 1Psec input
35

routine module: (Blaze. Matt, loannidis, John, and Keromytis, Angelos D., February
2001)

- Receives | P packets are received from external source.
- Queries Security Policy Database to determine whether to
forward the packet or discard: Query SPD(Packet’s source IP,
source port, destination IP, destination port, Protocol, IPSEC
Protocol type):
- If “Require’ then set “Require’ Flags and forward packet
to IPSEC Processing module.
- If “Acquire’ then set Acquire flags and forward to IPSEC
processing module.
- If “Permit” (nonIPSEC packet) then forward to
appropriate higher-layer protocol.
- If “Deny” then discard packet.
- If Null (no entry in SPD) and IPSEC Packet then discard.
- If Null (no entry in SPD) and nonIPSEC Packet forward
to appropriate higher-level protocol.

I Psec Input Higher-Level II
Module Permit or Null Protocol

Non-IPsec
packet
Require/Acquire _
(E:> Input Module IPsec Processing
Module
Discard S(l;“ery SPD for

(Deny/Null & <y
| Psec packet)

36

Figure 3.14. 1Psec Input Module.
1.11.2 | Psec Output Routine

IPsec’s output rouine provides an interface and buffer for all
outgoing message traffic. The packets are filtered and processed in one of three ways:
provide IPsec protection, provide no protection, or discard. See Figure 3.15.

The following is a pseudo code representation of the IPsec input
routine module: (Blaze. Matt, loannidis, John, and Keromytis, Angelos D., February
2001)

- Packets are received from Higher/Upper Layer Applications.
- Queries Security Policy Database to determine whether 1Psec packet
protection equired for packet - Query SPD(Packet’s source IP, source
port, destination IP, destination port, Protocol):
- If “Require” then set “Require’ Flags and forward packet to
| Psec Processing module.
- If “Acquire’” then set Acquire flags and forward to IPsec
processing module.
- If “Permit” (nonIPsec packet) then forward to network for
transmission.
- If “Deny” then discard packet.
- If Null (no entry in SPD) then forward to network for

transmission.

37

I Psec Output Higher-Level II
Module Permit or Null Protocol
Non-IPsec
Permit & Null packet
For non IPsec

packet Require/Acquire .
% Output Module I Psec Processing
Module

Discard S:I?ry SPD for
(Deny/Null & &y
| Psec packet)

Figure3.15. [Psec Output Module.

1.11.3 | Psec Processing M odule

The IPsec processing module provides an interface for the
input/output modules, the SAD and the SA set-up module. After IPsec packets are
verified and approved by the SPD, they are forwarded to the IPsec processing module for
further processing. For incoming packets, the SAD is queried to determine whether or not
an SA exists in the SAD. If not, the IPsec peer negotiation phase is queued. If an SA
exists the 1Psec processing module utilizes the information provided by the existing SA
to remove the IPsec protection from the packet for further processing. Similarly for
outgoing packets, the SAD is queried, possibly triggering 1Psec peer negotiation and
finally using existing SAs to encapsulate the packet with the appropriate | Psec protection.
(Blaze. Matt, loannidis, John, and Keromytis, Angelos D, February 2001)

The following is pseudo code of the IPsec processing module:

- Recealves | P packets from the Input/Output module.

- Query SAD (Packet’s source/destination |P, Security Parameter Index
(SPI), incoming/outgoing).

- If “SA Exists” and “incoming” then process | Psec packet resulting in a

38

de-capsulated IP Packet. Forward packet back to the IPsec Input
module for further processing.

- If “SA Exists’ and the packet is “outgoing” then process the IP packet
resulting in an encapsulated/I Psec protected |P Packet. Forward 1Psec
packet to external network for routing.

- If “No SA Exists’ then forward packet to SA set-up

1.11.4 SA SetUp Module

The IPsec SA set-up module provides an interface between the
SAD, SPD, KeyNote DB, and IKE processing module. The SA set-up module is involved
in the IPsec SA generation process. The SA setup module is triggered when it receives
an IP packet from the IPsec processng module. (Blaze. Matt, loannidis, John, and
Keromytis, Angelos D, February 2001)

The following pseudo code represents the SA set- up module:
- If packet is“Incoming” then
- Performs a double check routine and if SA exists for
packet then packet is dropped (should have been
determined earlier in process suspect situation)
- Otherwise: IKE Daemon triggered.
- Awaits completion of IKE process.
- Updates SPD and SAD with peer communications security
associations and policies.
- Discards original unprotected packet.
- If packet “Outgoing” then
- Queries SPD for relevant policy:
- If policy isfound then trigger the IKE Daemon.
- Otherwise drop the packet
- Awaits completion of the IKE process.
- Updates the SPD and SAD with peer
communications security associations and policies.
- Discards the original unprotected packet.

112 Internet Key Exchange (IKE)
39

The Internet Key Exchange provides |Psec with a means of performing
automated SA creation for network peer communication. Specifically, IKE is an
automated protocol for generating, negotiating, and creating Security Associations (SA)
between network peers. (Savolainen, Sampo, 1999)

IKE is a hybrid protocol developed from the following protocols.
(Savolainen, Sampo, 1999)
- Oakley key exchange and
- Skeme key exchange
- Key Management Protocol (ISAKMP) framework.
Without IKE, 1Psec would require costly manual SA generation seriously
limiting the system ability to function at a dynamic level. (Savolainen, Sampo, 1999)

IKE can be triggered by the following specific events (See figure 3.16)
(Savolainen, Sampo, 1999)
- Remote peer negotiation initiation
- Timer scheduled events
- Kernel — PF_Key upcalls for new SA/ expired Sas. A PF _Key is key
management kernel interface used to trigger an IKE/ISAKMP daemon.
- User —signals or first-in first out queuing (FIFO)

40

Controlling eventsfor IKE

Timer scheduled IKE/isskmpd negotiation initiations
events event-driven < @I
daemon
Signals
Upcalls o
(PF_KEY) FIFO

Kernel

(new SA
expired

Figure3.16. Controlling Events for IKE.
(From: NPS-CS-02-003, January 2002)

1.13 Internet Security Association And Key Management Protocol
(ISAK M PD)

The following section is references (Maughan, D., Schertler, M.,
Schneider M., Turner J, November 1998).

The Internet Security Association and Key Management Protocol
(ISAKMP) defines the required payload for exchanging key generation and
authentication data between negotiating 1Psec peers The ISAKMP daemon, ISAKMPD,
defines the mechanics of implementing a key exchange protocol, and the negotiation of a

security association.
ISAKMPD defines how peers:
- Communicate
- Construct their messages
- Establish state transitions required for secure communications.
In order for peers to communicate within the confines of the IPsec, they

41

must first negotiate on a Security Associations (SA). This negotiation is performed via
the Internet Key Exchange (IKE). ISAKMPD defines the specifics and the syntax
required to complete the negotiation.

There are two parts to IPSec’s security processing as defined by
ISAKMPD (Seefigure 3.17)
- Security Association Negotiations. Peers negotiate to agree on the
security association that will define their secure communication
- Security Association Processing. SAs are utilized for secure

communication until they are deleted, modified, or expire.

| Psec Security Association Process Defined by I SAKMPD

Use SA for
Secure
Qmmunicatio

Phase |
IKE SA
Negotiation

i

. Aggressive .

Figure3.17. IPsec Security Association Process Defined by ISAKMPD.
Security association negotiations utilizes a two phases for security
negotiations:
- Phase | — peers negotiate for IKE security associations (SA) (where
none currently exists). There are two choices for Phase |: Main-Mode

and Aggressive-Mode

- Main-M ode — protects the identity of peers by sending a sequence of
42

authentication information. (Refer to figure 3.18)
- Utilizes 6 messages:

- M essages1-2: used for negotiating the security
policy for the exchange. Sent in the clear.
- Messages 3-4: used for DiffieeHellman
keying material exchange.
- Messages 5-6. used for authenticating the
peers with signatures or hashes and optional

certificates. Sent encrypted.

IKE Phasel - Main Mode

Peer A -Initiator Peer B - Responder
Message 1 ISAKMP Header & IKE SA

Message 2 ISAKMP Header & IKE SA
<

Message 3 ISAKMP Header, Key Exchange Payload, Nouce

Message 4 ISAKMP Header, Key Exchange Payload, Nouce

Message 5 ISAKMP Header, Encrypted [Identity Payload, Authenticator]

ISAKMP Header, Encrypted [Identity Payload, Authenticator]
<

Message 6

Figure 3.18. IKE Phasel — Man Mode.
(After: Maughan, D., Schertler, M., Schneider M., Turner J, November1998) -

Aggressive Mode- does not protect the identity of peers and
sends al authentication information at the same time. This mode
is used when bandwidth is a concern. (Refer to Figure 3.19)- It
utilizes three messages.
- Message 1 proposes the policy, and passes data for key-
exchange, a nonce and some information for identification.
Sent unencrypted.

43

- Message 2: aresponse, which authenticates the responder and
concludes the policy and key-exchange. Sent in the clear.

- Message 3: used for authenticating the initiator and provides
aproof of participation in the exchange. Encrypted.

- Note: The identity of the responder cannot be protected, but
by encrypting the last message the identity of the initiator is
protected.

IKE Phasel - Aggressive Mode

Peer A -Initiator Peer B - Responder

Message 1 ISAKMP Header, IKE SA, Key Exchange Payload, |dentity Payload

>

Message 2 ISAKMP Header, IKE SA, Key Exchange Payload, |dentity Payload

<

Message 3 ISAKMP Header, Encrypted [Identity Payload, Authenticator]

Figure 3.19. IKE Phase | Aggressive Mode.
(After: Maughan, D., Schertler, M., Schneider M., Turner J, November 1998)

- Phase || — peers negotiate for |Psec security associations (SA) or
new keying material using the previously established IKE SA’s for

protection. There is only one mode for phase two: Quick Mode.

- Quick Mode is bound to Phase | in that it relies on Phase | to
establish a valid IKE SA to protect 1Psec SA negotiation. Quick
mode is used to derive keying material and negotiate shared policy
for nonISAKMP SAs between peers. NO peer authentication is
required since Phase | establishes peer identities bound to security

44

associations. Exchange of keys to determine how the data between
peers will be encrypted — establishing IPSec SAs. All the payloads
except ISAKMP header are encrypted. A Diffie-Hellman key
exchange may be done to achieve perfect forward secrecy (PFS).
PFS means that an IPSec SA's key was not derived from any other
secret. This ultimately strengthens the overall secuity of the
exchange. Many SAs can be negotiated during one Quick Mode
exchange. Either one of the parties might initiate the quick mode

exchange regardless of who initiated the first phase.
- Quick Mode uses three messages.

- Message 1. Contans the ISAKMP header
(unencrypted) and then includes proposed SA(S),
identification & authentication information (for both
sender and receiver) and nonce information (all

encrypted)

- Message 2: Contains the ISAKMP header
(unencrypted) and then includes responding proposed
SA(s), identification & authentication information (for
both sender and receiver) and nonce information (all
encrypted)

- Message 3. Contains the ISAKMPD header
(unencrypted) and a verifying Hash (encrypted).

45

IKE Phasell - Quick Mode

Peer A -Initiator Peer B - Responder
Message 1 ISAKMP Header, encrypted[Hash(1) Payload, SA, Nouce Payload,
Identity Payload of A, Identity Payload of B]
>
Message 2 ISAKMP Header, encrypted[Hash(2) Payload, SA, Nouce Payload,
Identity Payload of A, Identity Payload of B]
<
Message 3
ISAKMP Header, encrypted[Hash(3) Payload
>

Figure3.20. IKE Phasell —Quick Mode.
(After: Maughan, D., Schertler, M., Schneider M., Turner J, 1998)

114 isakmpd.conf

The following section contains information referenced from
(ISAKMP.CON(5), OpenBSD Programmer’s Manual, October 1998). isakmpd.conf is
the configuration file for the isakmpd daemon. It provides the initial security

associations and keys used for | Psec peer negotiations.

Once the | Psec process determines that Phase | negotiations are required,
isskmpd.conf is queried to establish a secure communication channel to perform
communication negotiations for Phase I1. 1sakmpd.conf provides the IKE Daemon with
both Phase | and Phase Il security proposals that are cached in memory until the IPsec

process is restarted or reinitialized.

Isakmpd.conf utilizes the traditional .ini style file construct. The file is
broken down into sections indicated by “[]”. Within each section parameters are
defined using the <tag> = <tag vaue or range vaue>“. Tag values may consist of other
section names. This results in a tree-like recursive structure. Unless a tag and tag value
is a reserved isakmpd.conf word, it is defined by declaring the tag or tag value as a

section later in the file. This continues until all tags and tag values have been defined in
46

terms of reserved words or values.

Many of the Tag fields have default values that are loaded from default

structures in the iskampd.conf code in the event that no value is present. However for

completeness and portability it is recommended that implementers provide specific

definitions to ensure functionality and policy enforcement.

1.14.1. isakmpd.conf Parameters

The following section contains information referenced from

(ISAKMP.CON(5), OpenBSD Programmer’s Manual, October 1998).

The following is a description of typical parameters found in the

isakmpd.conf file- General Section

typical ones used are:

This section contains the global configuration parameters. The

- Policy-file: Keynote policy file. Default is "/etc/isakm:
pd/isakmpd.policy”.

- Default-Phase-2-Quites - A list of Phase 2 suites that will be used
when establishing dynamic SAs. Default is: QM-ESP-3DES-
SHA-PFS-SUITE.

- Retransmits:. Number of times a negotiation is retransmitted.

- Check-interval: Interval between “watchdog” checks of
connections required to be up at al times.

- Exchange-max-time: Maximum time in seconds for an exchange
to setup before aborting.

- Listen-on: |P-addressesto listen on.

- Shared-SAD Defined if multiple instances can be executed on
top of one SAD

- Pubkey-directory: Path to directory holding public keys. The
default directory is: "/etc/isakmpd/pubkeys’.

47

- Phase| Section
This section is used to establish ISAKMP negotiation SAs
The following are typical tags used in this section:

- IP-address: The name of the ISAKMP peers at the given IP-
address.

- Default: The name of the default ISAKMP peer.

Note: The name defined here will be used as a section name later

on in the isakmpd.corf file.
- Phase |l Section

This section is used to define the IPsec negotiation SAs.. The
following are typical tags used in this section:

- Connections:; List of 1Psec "connection" names that should be

established automatically during daemon startup.

Note: These names are section names where further parameter
information is defined. See Section <IPsec-connection> below.

- Passive-connections: The list of IPsec "connection" names

recognized and initialized.

- Keynote Section

This section is used to establish Keynote dependency parameters.
The following are typical tags used in this section:

- Credential-directory: Directory, which contains directories for
Ids. This in turn contains the files named " credentials’ and
Tprivate key".

- X509-Certificate Section

This section is used to establish Certificate dependency

parameters. The following are typical tags used in this section:

- CA-directory: Directory for PEM certificates of
48

certification authorities which are trusted to sign other certificates.
- Cert-directory: Directory for PEM certificates that
are trusted to be vaid.

- Accept-sdlf-signed: Defines certificates not originating from a
trusted CA that will be accepted.

- Private-key: Private key match for certificate public key.
- Referred-to sections

- ISAKMP-peer_: Negotiation parameters for ISAKMP peer

- Phase: The constant 1.

- Transport: Name of the transport protocol. The default is

UDP.

- Port: Optional. If UDP used, the UDP port number. The default
value is 500, which is the IANA-registered number for ISAKMP.

- Local-address: The local 1P-address.
- Address: IP-address of the peer.
- Configuration: The name of the ISAKMP-configuration section. See
<ISAKMP-configuration>.

- Authentication: If available, authentication data for this specific peer. -
ID: If available, the name of the section that describes the local client ID.
If not available, the default value is the address of the local interface

where packets are being sent to at the remote daemon. See <Phasel-1D>.

- Remote-ID: If available, section name that describes the remote cliert
ID. If not available, it defaults to the address of the remote daemon. See
<Phasel-ID>.

- Flags: List of flags specific to further handling of ISAKMP SA.
Currently no specific ISAKMP SA flags are defined.

49

- _Phasel-I1D_

- ID-types The ID type as defined by the RFCs. For Phase I:
IPV4_ADDR, IPV4 ADDR_SUBNET, FQDN, USER FQDN, or
KEY_ID.

- Address :If the ID-type is IPV4_ADDR, then this tag should exist with
an |P address.

- Network: If the ID-type is IPV4_ADDR_SUBNET this tag should exist

with a network address.

- Netmask: If the ID-type is IPV4_ADDR_SUBNET this tag should exist
with a network subnet mask.

- Name: If the ID-type is FQDN, USER_FQDN, or KEY_ID, this tag

should exist with domain name, user@domain, or other identifying string.
ISAKM P-configuration

DOI: The domain of interpretation as defined by the RFCs. Default is
IPSEC.

EXCHANGE TYPE: The exchange type as defined by the RFCs.
ID_PROT is used for main mode and AGGRESSIVE is used for
aggressive mode

Transforms: A list of proposed transforms to use for protecting the
ISAKMP traffic.

ISAKMP-transform

- ENCRYPTION_ALGORITHM: The encryption algorithm defined by
RFCs or ANY to indicate that any encryption algorithm proposed will be
accepted.

-KEY_LENGTH: Used for encryption agorithms with variable key
length.

- HASH_ALGORITHM: The hash agorithm as defined by RFCs, or

50

ANY.

- AUTHENTICATION_METHOD: The authentication method as defined
by RFCs, or ANY.

- GROUP_DESCRIPTION: Symbolic group names used for Diffie-

Hellman exponentiations, or ANY. The names include:
MODP_768, MODP 1024, EC 155 and EC_185.
- PRF: The agorithm for the keyed pseudo-random, or ANY..
- Life: A list of lifetime descriptions, or ANY .
Lifetime
- LIFE_TYPE: SECONDS or KILOBY TES depending on the type of
the duration. Thisfield may NOT be set to ANY.

- LIFE_DURATION: An offer value, a minimum acceptable value, and a
maximum acceptable value. Can also be set to ANY.

| Psec-connection_
- Phase: The constant 2.

- ISAKMP-peer: ISAKMP-peer name used to establish a connection. The

value is the name of an <ISAKMP-peer> section.
- Configuration: |Psec-configuration section name.
See <IPsec-configuration>.

- Local-1D: If present, the name of the section that describes the optional
local client ID. See<IPsec-1D>.

- Remote-ID: If present, this is the name of the section that describes the

optional remote client ID presented to the peer. See
<|Psec-1D>.

- Flags: A list of flags controlling the further handling of the IPsec SA.
Currently only one flag is defined:
51

- Active-only If thisflag is present and the <IPsec-connection> is part of
the phase 2 connections, it will not automatically be used for accepting
connections from the peer.

IPsec-configuration

- DOI : The domain of interpretation as defined by the RFCs. Normally
IPSEC. If unspecified, defaults to IPSEC.

- EXCHANGE_TYPE: The exchange type as defined by the RFCs. For
quick mode thisis QUICK_MODE.

- Suites: A list of protection suites (bundles of protocols) available for

protecting the IP traffic. Each of the list elements is a name of an
<IPsec-suite> section.
_ I Psec-suite

- Protocols: List of the protocols included in the protection suite. Each of

the list elements is a name of an <IPsec-protocol> section.
_ | Psec-protocol

- PROTOCOL _ID: The protocol as defined by the RFCs. Acceptable
values include: IPSEC_AH and IPSEC_ESP.

- Transforms: List of transforms usable for implementing the protocol.

Each of the dementsis a name of an <IPsec-transform> section.

- ReplayWindow: The window size used for replay protection. Normally
not adjusted.

IPsec-transform
- TRANSFORM_ID: Thetransform ID as defined by the RFCs.

- ENCAPSULATION_MODE: The encapsulation mode as defined by the
RFCs. Normal values includes TRANSPORT or TUNNEL.

- AUTHENTICATION_ALGORITHM: The optional authentication

algorithm for the ESP transform.
52

- GROUP_DESCRIPTION: An optional (provides PFS if present) Diffie-

Hellman group description. The values are
the same as GROUP_DESCRIPTION'sin <ISAKMP-
transform> sections described above.
- Life: List of lifetimes, each element is a <Life-time> section name.
IPsec-ID

- ID-type: The ID type as defined by the RFCs. The current value for
IPsec isIPV4_ADDR or IPV4_ ADDR_SUBNET.

- Address: If the ID-type is IPV4_ADDR, then an IP address should be
listed.

- Network: If the ID-type is IPV4_ADDR_SUBNET, then an IP address
should be listed.

- Netmask: If the ID-type is IPV4_ADDR_SUBNET, then a network
subnet mask should be listed.

- Protocol: If the ID-type is IPV4_ADDR or IPV4 ADDR_SUBNET,
then this tag indicates which transport protocol should be trarsmitted over
the SA. If left unspecified, all transport protocols between the two address
(ranges) will be sent (or permitted) over that SA.

- Port: If the ID-type is IPV4_ADDR or IPV4_ ADDR_SUBNET, then
this tag indicates which source or destination port is allowed to be
transported over the SA (depending on whether this is a local or remote
ID). If left unspecified, all ports of the given transport protocol will be
transmitted (or permitted) over the SA. The Protocol tag must be

specified in conjunction with this tag.

1.14.2. isakmpd.conf Example

The following section contains information referenced from

53

(ISAKMPD.CONF (5), OpenBSD Programmer’s Manual, October 1998)

The following is an example isakmpd.conf file. The file provides
for communication between two peers using both the ESP and AH protocols. Specifically
it loads two security proposals. One for ESP using AES for an encryption agorithm,
SHA for encryption authentication, and Tunnel mode, and enforcing Perfect Forward
Security. The other for AH, using SHA for an authentication algorithm, tunnel for the
transport mode and perfect forward security (PFS). Notice how after the required sections
of [General] and [Phase 1], the rest are dependent on previous entries in the mandatory
sections. Such as [Peer-131.120.8.95/131.120.8.91]

A configuration sample for the isskmpd ISAKMP/Oakley (aka IKE) daemon.

[Generdl]

Listenron=10.1.0.2

Policy-file= letclisakmpd/isakmpd.policy
Retransmits= 3

Exchange- max-time= 120

[Phase 1]
10.1.0.1= I SAK M P-peer-west

[Phase 2]
Connections= | Psec-east-west

[ISAKMP-peer-west]

Phase= 1

L ocal-address= 10.1.0.2
Address=10.1.0.1

Configuration= Default- main-mode
Authentication= mekmitasdigoat

[1Psec-east-west]

Phase= 2

|SAKMP-peer= | SAKM P-peer-west
Configuration= Default-quick- mode
Local-ID= Net-east

Remote-I1D= Net-west

[Net-west]

ID-type= IPV4_ADDR_SUBNET
Network=192.168.1.0

Netmask= 255.255.255.0

[Net-east]
ID-type= IPV4_ ADDR_SUBNET
Network= 192.168.2.0

Netmask= 255.255.255.0

Main mode descriptions

[Default- main- mode]
EXCHANGE _TYPE=ID_PROT
Transforms= 3DES-SHA

Quick mode descriptions

[Default-quick- mode]
EXCHANGE _TYPE= QUICK_MODE
Suites=s QM-ESP-AES-SHA-PFS-SUITE,QM-AH-SHA-PFS-SUITE

KeyNote credential storage
[KeyNote]
Credential-directory=/etc/isakmpd/keynote/

55

Certificates stored in PEM format
[X509-certificates]

CA-directory= [etc/isakmpd/cal
Cert-directory= letclisakmpd/certs/
Private-key= /etc/isakmpd/private/local .key

Main mode transforms
HHHHHHHH R

[3DES-SHA]

ENCRYPTION_ALGORITHM= 3DES CBC
HASH_ALGORITHM= SHA
AUTHENTICATION_METHOD= PRE_SHARED
GROUP_DESCRIPTION= MODP_1024

Life= LIFE_3600 SECS

Quick mode protection suites

[QM-ESP-AES-SHA-SUITE]
Protocols= QM-ESP-AES-SHA

#AH
[QM-AH-SHA-PFS-SUITE]
Protocols= QM-AH-SHA-PFS

Quick mode protocols

#AES

56

[QM-ESP-AES-SHA-PFS]
PROTOCOL_ID=IPSEC_ESP
Transforms= QM-ESP-AES-SHA-PFS-XF

#SHA

[QM-AH-SHA-PFS]
PROTOCOL _ID= IPSEC AH
Transforms= QM-AH-SHA-PFS-XF

Quick mode transforms

#AES

[QM-ESP-AES-SHA-PFS-XF]|

TRANSFORM _ID= AES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
GROUP _DESCRIPTION= MODP_1024

Life= LIFE_3600_SECS

#AH

[QM-AH-MD5-PFS-XF]
TRANSFORM_|D= SHA
ENCAPSULATION_MODE= TUNNEL
GROUP _DESCRIPTION= MODP _768
Life= LIFE_3600 SECS

[LIFE_3600_SECS]
LIFE_TYPE= SECONDS
LIFE DURATION= 3600,1800:7200

57

1.14.3 isakmpd.conf Process

The IKE daemon reads the isakmpd.conf during IPsec
initialization to load Phase | and Phase Il security proposals, representing the local
security policy, in memory. The IKE daemon is initialized during system start or when a
“reinitialized” system call is executed (by either the kernel, upper-level process or a
user). Once the security proposals are loaded in memory, the IPsec process can initialize
the IKE Daemon to begin IPsec peer negotiations for Phase | and Phase Il. (See figure
321

isakmpd.conf Process

ISAKMPD.CONF

At IPsec (re)initialization
Load security proposals
From isakmpd.conf

IPSEC MECHANISM

Using IKE SA's When prompted, use security
negotiate for security proposalsin memory to negotiate
associations (SA) for security associations (SA)
with peer

Figure 3.21. isakmpd.conf Process.

1.15 Security Palicy — KeyNote

The following section contains information referenced from (Blaze, Mait,

Feigenbaum, Joan and Keromytis, Angelos D., April 1998)

A security mechanism requires a policy to define the security requirements and
establish rules and parameters. Security policies may have a variety of levels of

interpretation, from human language descriptions to the fine granular specifications
58

describing encryption and authentication methods and key lengths. Of course, accurate
mapping is required throughout the layers of the interpretation to ensure specific

requirements are not inadvertently modified or disregarded during trandation.

Previous versions of IPsec utilized static security policies. This implied that a
security policy is invoked on the security mechanism prior to system initiaization and
then remains unchanged until system is taken off-line to make appropriate policy

adjustments.

The OpenBSD version of IPsec utilizes a “trust management” infrastructure —
Keynote. Specifically, KeyNote provides a mechanism for defining local policies used by
IPsec in negotiating SA’s between peers. Keynote provides a straightforward syntax for
defining both security credentials and local security policies. Credentials are a means of
identifying specific network “principals’ (users, hosts, etc.). The policies and credentials
are combined to form “assertions’. The assertions define actions authorized by or for
specified key holders. By signing the assertions, they may be safely transmitted across
“untrusted” networks. The assertions are divided into three sections:

- Authorizer identity — may involve local policy or signed key for
credentials.

- Key predicate — key(s) being authorized
- Action predicate — action being authorized

A respondent IPsec node having received a security proposal from an initiator
IPsec node, would first perform a query on its loca KeyNote using the syntax of an
assertion to find out if the initiator's proposed security proposal is alowed. KeyNote
would compare the proposal to its stored policy assertions and credentials to determine
whether the proposed actions are valid in accordance with the local policy. KeyNote
would reply to the respondent |Psec node with a Boolean response. The respondent |Psec
node would either establish a secure communications path with the initiator (Boolean

response true) or not (Boolean response false). (see Figure 3.22)

59

KeyNote Process

IKE SA protected
Negotiations

— communications

S —

[Psec SA Daemon |/

KeyNoteisqueried using
assertion syntax to determine
if proposed SA isvalid AW
security policy

Figure3.22. KeyNote Process.

KeyNote
Interface

1.15.1. isakmpd.policy

The following section contains information referenced from
(KEYNOTE(5), OpenBSD Programmer’s Manual Pages, October 1999)

KeyNote policy assertions in OpenBSD IPsec are defined in
isakmpd.policy.

The assertions are divided into field sections using the tag: value

syntax. The following are authorized field sections for KeyNote:
- Authorizer — only mandatory field. Identifies authorizer
- Comment
- KeyNote Version
- Licensees
- Local-Constraints

- Signatures

60

- Conditions — contains the action/policy predicatesin

accordance with the security policy.

1.15.2 Condition Attributes
The following section contains information referenced from
(KEYNOTE(5), OpenBSD Programer’s Manual Pages, October 1999)

The following attributes are currently defined in the condition

assertion section: (Note that in KeyNotefiskampd.policy al values are in lowercase)
- app_domain: Always requires | Psec policy.
- Domain of Interpretation (Doi) : Always defined as ipsec.

- Initiator: yesif the local daemon is initiating the Phase 1| SA, no

otherwise.

- phase 1. aggressive or main dependent on Phase | mode

requirement.

- PFS: yes if a Diffie-Hellman exchange will be performed during
phasell/ Quick Mode, no otherwise.

- ah_present, esp_present, comp_present: yesif an AH, ESP, or

compression proposal was received respectively, no otherwise.

- ah_hash_alg: md5, sha, ripemd, or des, based on the hash
algorithm. Defines the generic transform to be used in the AH
authentication.

- esp_enc_alg: des, desivb4, 3des, rc4, idea, cast, blowfish,
3idea,-iv32, rc4, null, or aes, based on the encryption algorithm
specified in the ESP proposal.

- comp_alg: oui, deflate, |zs, or v42bis, based on the compression

algorithm specified in the compression proposal.

- ah_auth_alg: hmac-md5, hmac-sha, dessmac, kpdk, or hmac-
ripemd. Based on the authentication method specified in the AH

proposd.
61

- esp_auth_alg: hmac-md5, hmac-sha, des-mac, kpdk, or hmac-
ripemd. Based on the authentication method specified in the ESP
proposal.

- ah_life_seconds, esp_life seconds, comp_life_seconds:
Lifetime of the AH, ESP, and compression proposal, in seconds. If

none listed the corresponding attribute will be set to zero.

-ah_life_kbytes, esp_life_kbytes, comp_life Kbytes: Lifetime of
the AH, ESP, and compression proposal, in kbytes of traffic. If
none listed the corresponding attribute will be set to zero.

- ah_encapsulation, esp_encapsulation, comp_encapsulation:

tunnel or transport.

- comp_dict_size: log2 maximum size of the dictionary, according

to the compression proposal.

- comp_private alg: Integer specifying the private algorithm in
use, according to the compression proposal.

- ah_key length, esp_key length: Number of key bits to be used
by the authentication and encryption algorithms respectively

- ah_key rounds, esp_key length: Number of rounds of the
authentication and encryption algorithms respectively (for variable
round algorithms).

- ah_group_desc, esp _group_desc, comp_group _desc. The
DiffieeHellman group identifier from the AH, ESP, and
compression proposal, used for PFS during Quick Mode. Valid
valuesare 1 (768-bit MODP), 2 (1024-bit MODP), 3 (155-hit EC),
4 (185-bit EC), and 5 (1536-bit MODP).

- phasel_group_desc: The Diffie-Hellman group identifier used
in IKE Phase 1.

- remote filter_type, local_filter _type, remote id_type:

62

| Pv4 address, | Pv4 range, | Pv4 subnet, |Pv6 address, | Pv6

range, | Pv6 subnet, FQDN, User FQDN, ASN1 DN, ASN1 GN, or
Key ID, based on the Quick Mode Initiator 1D, Quick Mode
Responder ID, and Main Mode peer 1D respectively

- remote filter_addr_upper, local_filter_addr_upper,

remote_id_addr_upper: For filter_type IPv4 address or IPv6

address, they contain the respective Ipv4 or Ipv6 address. For
IPv4 range or |IPv6 range, these contain the upper end of the
address range. For IPv4 subnet or 1Pv6 subnet, they contain the
highest address in the specified subnet

- remote filter_addr_lower, local _filter_addr_lower,

remote_id_addr_lower: For filter_typeis|Pv4 address or | Pv6

address, these contain the respective address. For 1Pv4 range or
| Pv6 range, these contain the lower end of the address range. For
| Pv4 subnet or | Pv6 subnet, these contain the lowest address in the

specified subnet.

- remote filter, local filter, remote id: For filter_type of an
address range or subnet, these are set to the upper and lower part of
the address space separated by a dash (-') character (if the type
specifies a single address, they are set to that address). For FQDN
and User FQDN types, these are set to the respective string. If the
Key ID payload contains non-printable characters then the
hexadecimal representation of the associated byte string (lower-
case letters) is used. Otherwise, they are set to the respective
string. For ASN1 DN, these are set to the text encoding of the
Distinguished Name in the payload sent or received. The format is

the same as that used in the Licensees field.

- remote filter_port, local filter_port, remote id _port:

Transport protocol port.

63

- remote filter_proto, local filter_proto, remote id proto:
etherip, tcp, udp, or the transport protocol number, depending on
the transport protocol set in the IDci, IDcr, and Main Mode peer 1D
respectively.

- remote_negotiation_address: 1Pv4 address of the remote IKE

daemon.

-local_negotiation_address: 1Pv4 address of the local interface

used by thelocal IKE daemon for this exchange.

- GMTTimeOfDay: UTC date/time, in YYYYMMDDHHMMSS
format.

- LocalTimeOfDay: local date/time, in YYYYMMDDHHMMSS
format.
1.15.3 Condition Predicate Syntax

The condition section utilizes a form of predicate logic to state

assertions for evaluating the security proposal. The following are specific syntax rules:
(ISAKMPD.POLICY (5), OpenBSD Programmer’s Manual, October 1998) (Blaze, Matt
loannidis, Jand Keromytis, Angelos, February 2001)

No blank lines are alowed

Assignment operator is“=="
Logical And operator is“&&”
Logical Or operator is*“||”

Parenthesis may be used to provide further granularity to statements.

Assertion must be terminated with “=> true’

1.154 Example isakmpd.policy

The following is an example KeyNote isakmpd.policy file. Notice

that the following operations are authorized:

Telnet (port 23) using AES as the encryption algorithm, SHA as the

64

encryption authentication algorithm and “tunnel” as the transportation

mode.

- Finger (port 79) using AH as the protection protocol, SHA as the

authentication algorithm, and “tunnel” as the transportation mode.

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat”
Conditions: app_domain == "IPsec policy" &&
((esp_present == "yes") && (esp_encapsulation == “tunnel”) & &
((local_filter_port =="23") ||
(remote filter_port =="23")) &&
(esp_enc_alg =="aes")) ||
((ah_present == "yes") & & (ah_encapsulation == “tunnel”) & &
((local_filter_port =="79") ||
(remote filter_port =="79")) & &
(ah_auth_alg == "hmac-sha"))
->"true";
ANALYSIS

The following is a consolidated description of the IPsec processes presented in

section B .

1 | Psec (Re)lnitialization
As mentioned earlier in the isakmpd.conf section, only during IPsec startup and

re-initialization is the isakmpd.conf read and are security proposals loaded into memory.

2. | Psec Output Processing

The following is the step-by-step processing of an outbound packet through an

IPsec mechanism: (Blaze, Matt, loannidis, J and Angelos D. Keromytis, February 2001)
Refer to Figure 3.23.

- 1) A packet arrives from a high-level protocol.
- 2) The SPD is consulted to determine if the packet requires |PSec protection.

- 3a) If protection is not required, the packet is forwarded to the external network.
65

- 3b) If IPSec protection is required the packet is forwarded to |PSec processing

module where
- 4) The SAD is consulted for SA specifics for the packet.

- 5a) If an SA exists for the packet, the appropriate security transformation are
applied to the packet and it is forwarded to the external network.

- 5b) If no SA exists the SA management module is triggered.

6) The SA set-up module consults the SAD to verify that no SA exists.

7a) If one does, the packet is dropped.

7b) The KeyNote Database is consulted using packet information via the
KeyNote interpreter to determine if the packet should be accepted, dropped or
needs |PSec protection. Note: This step does not occur in the OpenBSD version
2.8 of |Psec.

- 8) In the event of the requirement for IPSec protection, the IKE daemon is
initiated.
- 9) IKE then negotiates security parameters with the distant peer. The distant

peer will reply with a proposed setting of secure communication parameters.

- 10) The Keynote database will be consulted to ensure that distant peer
parameters comply with local policy.

- 11) If dl iscompliant, SA may be created updating the SAD and SPD.

- 12) At completion the original packet is discarded.

66

ndUser | Psec Ar chitecture

L1b
n 5/ User Mode
J’ W—
1 Kernel <
| P qutput isakmpd.conf
3:61 Routine 11
3 -
i Y
| PSec > |KE Daemon
— Processin A
' 9 %
‘5a
[KeyNoteInterpreter] 10
IP Input
g Routine
KeyNote | |
.y |
‘ ‘ Peer

g e

Figure3.23. IPsec Architecture.
(After: Blaze. Matt, loannidis, John , and Keromytis, Angelos D, 2001
3. | Psec I nput Processing

The following is a step-by-step process of outbound packet through an IPsec
mechanism: (Blaze, Matt, loannidis, Jand Angelos D. Keromytis, February 2001) [Refer
to Figure 3.24

1) A packet arrives from an external network.

2) The SPD is consulted.

3a) If packet is an IPsec packet, forwarded to |Psec processing module

3b) If packet is an IPsec packet and SPD says to process packet, the packet is
forwarded to internal system or upper-layer protocol/application.

- 3c) If SPD saysto discard, the packet is discarded with no further processing.
- 4) The SAD is consulted for SA specifics for the packet.

- 5a) If an SA exists, the packet is dencapsulated and sent back to the IPsec input

process module.
- 5b) If an SA does not exist, the SA SetUp module is triggered

67

- 6) The SPD is consulted.

- 7a) If the packet is authorized/valid, it is forwarded to internal system or upper-
layer protocol/application.

7b) 1f SPD saysto discard, the packet is discarded with no further processing.

8) The SA set-up module consults the SAD to verify that no SA exists.

9a) If one does, the packet is dropped.

- 9b) The KeyNote Database is consulted using packet information via the
KeyNote interpreter to determine if the packet should be accepted, dropped or

needs |PSec protection. Note: This step does not occur in OpenBSD version of

| Psec.

- 10) In the event of the requirement for IPSec protection, IKE daemon is
initiated.

- 11) IKE then negotiates security parameters with the distant peer. The distant
peer will consult its own KeyNote Policy and reply with a proposed setting of

Secure communication parameters.

- 12) The Keynote database will be consulted to ensure distant peer parameters

comply with local policy.

- 13) If al iscompliant, SA may be created updating the SAD and SPD.
- 14) At completion the original packet is discarded.

68

End-U .
= | Psec Ar chitecture
—,
E 1175 User Mode
Kerne <y
I P Output

Routine 13
SAD 14

7'y 9a
4 8
10 |KE Daemon

IPSec SA gl
Processing | 5 S QE/ +
5
I 3a [KeyNoteInterpreter] 12
13
IPInput | ¢—2—p

<+«—» SPD
AN
W Database |

Figure3.24. |Psec Architecture.
(After: Blaze. Matt, loannidis, John, and Keromytis, Angelos D, February 2001)

E. CONCLUSION
In this Chapter | reviewed the IPsec architecture, describing each of the

components and the “incoming” and “outgoing” IP packet process. | introduced
OpenBSD’s security policy implementation, KeyNote, explaining how it interfaces with
the IPsec mechanism. | then concluded by providing a detailed step-by-step outline of

|Psec’ s input and output processing.
The next chapter, Design and Process, will detail the methodology involved in the
parameterization of | Psec.

69

THISPAGE INTENTIONALLY LEFT BLANK

70

V. DESIGN AND PROCESS

A. INTRODUCTION

In this chapter, | will outline and discuss the design and process for
parameterizing |Psec. Specifically | will discuss two design goals: providing granularity
to KeyNote, and parameterizing and improving the isakmpd.conf / isakmpd.policy
(KeyNote) security proposal loading process. The goal of parameterizing IPsec is to
enable IPsec to assume a dynamic functionality. This dynamism is based on new,
external, environment parameters that can appropriately cause IPsec security attribute
adjustments for protected communications.

In order to incorporate the environment/dynamic parameters into the 1Psec
mechanism, the security policy found in KeyNote must be extended appropriately. By
adding dynamic parameters to KeyNote, the security mechanism can accurately perform
Boolean assertion operations incorporating the specified value of the dynamic
parameters. The dynamic parameters will also have to be properly loaded into the

assertion query mechanism.

IPsec mechanisms negotiate security attributes between peers in the form of
security proposals. A security proposal consists of a set of authorized security attributes
that can be associated with a particular communication connection to meet with the local
security policy. A security proposal set can be made up of one or more security

proposals each with a set of security attributes.

Currently the IKE loading process retrieves security proposal ranges from
isakmpd.conf. However, during peer negotiations, security proposals, which are loaded
during (re)initialization from isakmpd.conf, are verified via iskampd.policy. This
requires security policy to be defined in multiple areas; namely isakmpd.conf and
isakmpd.policy. For efficiency and ease of management, this process will be modified so
that security proposal ranges are loaded directly from KeyNoteisakmpd.policy. In
essence, my goa is to streamline the storage of security policy to only one location:

KeyNote/isakmpd.policy.

71

Another modification is required to properly incorporate the dynamic parameter
values into the proposal set loaded from isakmpd.policy. This will provide dynamic
parameterization to the IPsec ensuring that only appropriate security proposals are loaded

during (re)initialization.

Implementing these modifications to the IPsec mechanism will ultimately
parameterize the IPsec (re)initialization and security proposal negotiation process.
B. PROVIDING GRANULARITY TO KEYNOTE

1. Goal

The process of providing granularity to KeyNote involves adding more attributes,
both security- and non-security-related to KeyNote. This will result in a more complex
security policy, increasing the overall potential parameter combinations possible in
KeyNote/isakmpd.policy. To reflect dynamic, environmental parameters in IPsec, the
security policy mechanism, KeyNote, will require modification. These modifications will
enable the local security policy to change according to changes in the new dynamic

external parameters.

The earlier examples of Network Mode and Security Level will be used as
external parameters and will be added to KeyNote's condition assertion. The extended
semantics of the security policy assertions will allow any dynamic external parameter and
any number of security-related parameters to be represented. The KeyNote Query
mechanism will then require the ability to import the current value of the dynamic
external parameters to perform a query based on the nrew dynamic parameters.

2. ProcessReview

The following is a brief review of the current KeyNote structure and KeyNote

guery mechanism, and a description of the required modifications.
21 Current Keynote Process Review

Currently, KeyNote's structure is composed of 1Psec specific parameters.
Dynamic parameters will need to be added to the structure. Likewise the KeyNote query

structure utilizes only 1Psec specific parameters.
2.1.1 Keynote Structure

KeyNote's structure is made up of IPsec security parameters and
72

related application parameters that describe alowed interactions between different
network peers. |Psec security parameters include encryption agorithms, authentication
algorithms, transportation modes, key length, key lifetimes, identification and
authentication certificates, and other security related variables. Related application

parameters include local and remote ports utilized by applications.
2.1.2 Current Keynote Query Mechanism

The KeyNote query mechanism is handled by the KeyNote
interface. To summarize the peer negotiation process, a brief description follows. The
initiating IPsec peer prompts the 1Psec mechanism by launching a security supported
application (i.e. telnet or finger). The initiator's IPsec mechanism sends a security
proposal to the responder peer to establish communication in support of the specified
application. The responder peer uses the proposal received to perform a query on its
KeyNote. If a security proposal is accepted, the responder returns the accepted security
proposal. Theinitiator then performs a query on the local KeyNote to ensure that security
proposal is authorized. If the query returns TRUE, the initiator returns a final message to
the responder completing the negotiation handshake. The query performed on KeyNote
verifies the security proposal’s compliance with locally defined policy. The query
mechanism loads the security proposals and performs the query on KeyNote receiving a
Boolean response reflecting whether or not the security proposal is consistent with the

local KeyNote policy.
2.1.3 Current KeyNote Process Flow

The following is a step-by-step review of the current KeyNote
process. See Figure 4.1. For amore details refer to Chapter Three | Psec Architecture.

73

Upper Layer Application

Responder | Psec
™ | Mechanism || Peer Proposal Current
KeyNote Process
ESP-DES
2 ! '
1
- 1b o4 7
IKE Peer <ﬁ —— [KeyNote
i IKE Daemon .
& Connection S Interface
5
SADB
— ! - Ckeyore]
lai T =
SPD Y | :

-esp_presen=="yes"’ && esp_enc_alg=="des’ &&
ﬁ local_filter_port=="80" && remote filter_port=="80"
Security Proposal Range | -a.pres=="yes' && ah auth alg=='sha’ &&

local_filter_port=="23" && remote filter_port=="23"
SLOrage | e

Figure4.1. Current KeyNote Process.

- la - Upper Layer Application triggers Initiator's IKE

Daemon and starts peer negotiation with responder peer.

- la — Security proposal ranges are retrieved from

initiator’ s memory

- 1b—. Initiator security proposal set is send to responder.

- 2 - Responder receives initiator's security proposal,
processes the proposal and replies by sending an acceptable
security proposal to the initiator peer. (Note: specifics on
the responder’s security mechanism are purposely obscure
to demorstrate the importance of independent system
architecture).

- 3 — Initiator peer recelves the responder’s security

proposal.

- 4 — Responder Peer’s proposal is submitted to the

Initiator’ s KeyNote interface.

74

- 5 —Initiator's KeyNote interface loads query mechanism
and submits the query to KeyNote, receiving a Boolean

response.
- 6 —Return to Initiator IKE Daemon.

- 7 —If aproposal is accepted then security associations
are constructed and loaded into Initiator’'s SAD and SPD.

- 8—If the proposal is accepted, then the initiator sends an
acknowledgement to the responder peer. Otherwise, the
initiator notifies the responder peer of the refusal and the
proposal is discarded.

2.2 Maodified Keynote Structure and Query Mechanism

In order to incorporate dynamic parameters into the KeyNote structure and

guery mechanism, the following modifications will be required.
2.2.1 Modificationsto Keynote Structure

The dynamic/environment parameters, Network Mode and
Security Level, and their authorized local ranges, need to be represented in the condition
section of the KeyNote structure. This will add further levels of granularity and
complexity to KeyNote.

For example, the condition statement in KeyNote, shown in figure
4.2, authorizing telnet communication between two peers using 3DES as the encryption
algorithm will have to be further defined for all ranges of network mode and security
levels. At this point, the security policy can provide different levels of security attributes
to the peer connection association by varying the encryption agorithm used in

accordance with the security level and network mode values.

75

An Example of a Condition Statement in KeyNote

//_’x

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat'
Conditions: app_domain == "IPsecpolicy" &&
((esp_present == "yes") && ~
L~ ((local_filter_port =="23") |
=" (remote_filter_port =="23")) &&
o (esp_enc_dlg=="aes")| ‘
- ((ah_present == "yes") &&)
.- “((local_filter_port=="79") || N
.~ (remote_filter_port =="79")) &&
(ah_auth_alg =="hmac-shd'))
->"true";

esp_present == "yes* — ESP encapsulated packet
local_filter_port == "23- outgoing Telnet communications
remote filter_port == "23"- incoming Telnet communications
ep_enc_alg=="3des’ —encryption algorithm is 3DES

Figure4.2. An Example of a Condition Statement inKeyNote.

It isimportant to ensure that the dynamic parameter modifications
to KeyNote do not depend upon on IPsec peers having identical dynamic parameters. It is
essential for compatibility that KeyNote incorporates the local dynamic parameters for
local use only and that the query process remain independent of peer dynamic
parameters.

2.2.2 Maodificationsto the KeyNote Query Mechanism.

The KeyNote query mechanism will require modification to allow
for dynamic parameter value injection. This will enable the query to properly evaluate
security proposals with respect to the aurrent value of the dynamic parameters. The
modifications will provide assurance that changes to dynamic parameters that might

occur during the negotiation are reflected accordingly in KeyNote decisions.
2.2.3 Modified KeyNote Process Flow

The following B a step-by-step review of the modified KeyNote
process. Refer to Figure 4.3.

76

.- Upper Layer Application
M odified pper ™ ayer e Dynamic Parameter Console
KeyNote Process || Peer Proposal g :
o o

ESP-DES
Responder | Psec T ; Dynamic
Mechanism A Par ameter
it ol Storage
L . N 5
2 1b 4] A
IKE Peer —1
Connection <% IKE Daemon | ==———% « eyNote
9 Interface
6
SADB 8 . »
SPD \ 4 - -network m(;de =="normal” && security_|level =="* high”.

&& esp_present=="yes’ && esp_enc_alg=="des’ &&
ﬁ local_filter_port==“80" && remote_filter_port=="80"
H -network mode == “normal” && security_level == “low”
Securlty Pr Oposa'l Range ah_present=="yes"’ && ah_auth_alg=="shd' &&
Stor age local_filter_port==“23" && remote_filter_port=="23"

Figure4.3. Modified KeyNote Process.
- la- Upper Layer Application triggersinitiator’s IKE

Daemon and starts peer negotiation with responder peer.

- la — Security proposal ranges are retrieved from

initiator’s memory

- 1b - Initiator security proposal is sent to responder.

- 2 - Responder receives initiator's security proposal,
processes the proposal and replies by sending an acceptable
security proposal to the initiator peer. (Note: specifics on
the responders security mechanism are purposely obscure
to demonstrate the importance of independent system
architecture).

- 3 — Initiator peer recelves the responder’s security

proposal.

- 4 — Responder’s proposal is submitted to the initiator’s
KeyNote interface.

- 5- Initiator’s KeyNote injects current dynamic parameter
77

values into the query structure.

- 6 — Initiator's KeyNote interface loads the query
mechanism and submits the query to KeyNote, receiving a

Boolean response.
- 7—Return to initiator’s IKE Daemon.

- 8 —If the proposal is accepted then security associations
are constructed and loaded into initiator’s SAD and SPD.

- 9 - If the proposal is accepted, the initiator sends an
acknowledgement to the responder peer. Otherwise, the
initiator peer notifies the responder of the refusal and the
proposal is discarded.

3. Modification Phases
The modification of the KeyNote Structure and Query Mechanism will be

performed in the following phases:
3.1 Add Dynamic Parametersto KeyNote

The first step in the process of adding granularity to KeyNote, is
development of a method to add dynamic parameters and their ranges to KeyNote. It is
essential that the parameters be added properly to the current security policy. Thisimplies
ensuring that al authorized values of the newly inserted parameters are correctly matched
with other corresponding values reflecting the security policy. For example, if Security
Level, with values High and Low, are added to KeyNote, the assertion would have to be
rewritten to account for all security attributes authorized when security level is Low and
High, respectively. This will add to the depth of the logical assertion as well as increases
its complexity. The importarce of understanding KeyNote's structure and syntax is
critical in performing the required modifications in achieving dynamic parameterization.

3.2 Develop aMethod to Inject Dynamic Parametersinto the

KeyNote Query Mechanism.

The next step is to design and develop a method to inject the current

values of the dynamic parameters into the KeyNote query mechanism. This process will

involve understanding the current KeyNote query mechanism to determine how the
78

dynamic parameters values can be injected.

3.3 Develop aConsole or Interface to Receive Dynamic Parameter
Selection/Adjustment.

A method will be required to allow a system or a user to make changes to
dynamic parameters used to select security attributes in accordance with the security
policy. This mechanism must have the capability to effect immediate change on the
dynamic parameters and may trigger adjustments to 1Psec mechanism.

34 Testing Modifications

Once all modifications have been performed, a thorough testing phase will
be required. Testing should involve at least two dynamic parameters (i.e. Network Mode
and Security Level) with at least two ranges for each. The query mechanism should be
tested to ensure that it is consistent and resistant to logica errors. All errors should be
documented and corrected if possible. Any uncorrected errors should be listed in the
Future Work Chapter Seven.

C. PARAMETERIZING AND IMPROVING ISAKMPD.CONF — KEYNOTE
PROPOSAL LOADING PROCESS

1 Goal

The (re)initialalization phase will require modification to incorporate the dynamic
IPsec parameters. The value of these parameters will have a direct effect on which
security proposals are loaded into memory for peer negotiations. Currently, local security
policy is represented in two areas: KeyNotefisakmpd.policy and isakmp.conf. This
causes a problem in the area of security policy management. To provide for coherent
policy management, the configuration process needs to be modified to utilize only
KeyNote/isakmpd.policy. Ultimately, the security policy will be managed in only one
database and will incorporate the granular dynamic parameters.

2. Process Review

The following is a brief review of the current configuration process of loading
security proposal ranges from isakmpd.conf. It is followed by a description d a
modified configuration process for loading security proposals from isakmpd.policy. This

modified process includes dynamic parameterization.

79

21 Current Process Review

Currently, during the initialization phase, isakmpd.conf is read to retrieve
valid security proposal ranges. The data stays in memory, unmodified, until needed or a
re-initidization is triggered.

The following is a step-by-step review of the current process. Refer to
Figure4.4.

Current S —
(Re)lnitialization

| sakmpd.conf
Process
&1 2

Configuration
Process

Y

—

Security Proposal Ranges
Storage
Figure4.4. Current (Re)lnitialization Process.

- 1 — (Re)Initialization triggers the IPsec configuration

process.

- 2 — Read the isakmpd.conf for mechanism initialization
parameters and valid security proposal ranges.

- 3—Load valid security proposas into memory for later use.

80

2.2 M odified Process Review

To effectively parameterize the configuration phase by
incorporating dynamic parameters, two modifications to the existing process are
required. First, the current value of dynamic parameters must be retrieved. Second,
valid security proposal ranges in accordance with the Network Mode and Security
Level values must be retrieved from KeyNotefisakmpd.policy instead of
isakmpd.conf.

The following is a step-by-step description of the modified
process. Refer to Figure 4.5.

Dynamic Parameter Console
[1] a

M odified
(Re)Initialization N

Process
Dynamic Parameter
&m 1b % Sorags
2

Configuration
Process

v KeyNote
— | Koo

Security Proposal Ranges
Storage

Figure 4.5

Figure4.5. Modified (Re)Initialization Process

- la — (Re)Initidization triggers the IPsec configuration
process, or

- 1b — Dynamic Parameter console triggers the IPsec
configuration process.
81

- 2—The Configuration Process retrieves the current values

of the Dynamic Parameters.

- 3 The Modified Configuration Process retrieves valid
security proposal parameters from KeyNote. Note that a
reduced iskampd.conf will still be required to store non

security related mechanism initialization parameters.

- 4 — The Configuration Process loads valid security

proposals into memory for later use.

3. M odifications Phases
The modification of KeyNote Structure and Query Mechanism will be performed

in the following phases:
3.1 Determine Security Proposal Range Syntax

In order to retrieve valid security proposal ranges from KeyNote instead of
insakmpd.conf, the proper loading syntax will need to be identified. If the KeyNote
utilizes a different syntax for security proposals, a parsing nethod will be required to

trangdlate the KeyNote syntax into the syntax required by configuration process.

Initial review indicates that the syntaxes differ and that parsing will be
required. After the valid security proposals are retrieved from KeyNote, they need to be
trandated into a form that is expected by the configuration process. Another potential
solution would be to change the expected security proposal range syntax in the
configuration process to one similar to that of KeyNote. (See Future Work Chapter
Seven)

3.2 Develop aMethod to Retrieve Current Dynamic Parameter

Values

A method to determine the current dynamic environment variables will be
required prior to retrieving the valid security proposals from KeyNote. The configuration
process should be able to easily access the parameters values for these parameters

3.3 Develop Method to Retrieve Valid Security Proposal Ranges
from KeyNote/isakmpd.policy

Once the values of the dynamic parameters have been determined, a
82

method for retrieving the @rresponding security proposals from KeyNote is required.
This method will have to be able to traverse the KeyNote Condition assertion structure
and retrieve the proposal ranges efficiently.

It is important to note that non-security related mechanism initialization
parameters will remain in isakmpd.conf. For further discussion, refer to Future Work
Chapter Seven.

4, Testing
Once al modifications have been performed, a thorough testing phase will be

required. Testing should involve at least two dynamic parameters (ie Network Mode and
Security Level) with at least two ranges for each. The query mechanism should be tested
to ensure that it is consistent and free of logical errors. All errors should be documented
and corrected if possible. Any uncorrected errors should be listed in the Future Work
Chapter.
D. CONCLUSION

The design and method for parameterizing |Psec was outlined and discussed in
this chapter. The design phase identified two specific modifications that will be required:
providing granularity b KeyNote, and parameterizing and improving isakmpd.conf /
isaskmpd.policy (KeyNote) security proposal range loading process. Providing
granularity to KeyNote will require an in-depth review of the KeyNote structure
including the Boolean query mechanism. The goa will be to logically insert the dynamic
parameter values according to policy definition, therefore, providing finer granularity to
the Boolean query mechanism. Modifications to the configuration process to enable
security proposal ranges to be retrieved from KeyNote, will require a syntax review of
KeyNote and security proposal ranges expected by the configuration process. There is

potential for a parsing requirement to translate proposals into the appropriate form.

Using the design and process provided, the implementation phase will follow with

specifics on pseudo and source code structures, successes and challenges.

83

THISPAGE INTENTIONALLY LEFT BLANK

V. IMPLEMENTATION

A. INTRODUCTION

The goal of this research is to modify the current implementation of OpenBSD
| Psec to incorporate parameterization of dynamic parameters. After a thorough review of
the current system architecture and an in-depth design phase, | was able to implement the
modifications.

The modifications were performed in two phases: providing granularity to
KeyNote, and stream-lining and incorporating parameterization to the isakmpd.conf /
isakmpd.policy (KeyNote) security proposal set-loading process.

For each phase, | will discuss the implemented design and methodology,
processing description, and pseudo code, including specific agorithms and code
structure, assumptions, challenges, workarounds, and potential problems. Any

implementation issues that could not be solved will be mentioned and further discussed in

the Future Work Chapter Seven.
B. PROVIDING GRANULARITY TO KEYNOTE
1 Parameterization of KeyNote.

Keynote previoudy used static parameters set by the system administrator,
defining system security information and authorized security associations. However, the
chalenge was to enable Keynote to handle dynamic parameters such as security level
and network mode. These parameters would be set via an externa module or device.
Incorporating these changes enabled dynamic parameters to control security attribute

setting adjustments in accordance with security policy.

The first step was to integrate dynamic parameter tag and value statements into
the current condition assertion structure of KeyNote/isakmpd.policy. The next step was
to analyze the current KeyNote query mechanism, specifically, the KeyNote query
routine used with static security proposa sets had to be located. Modifications could

then be made to the existing code to incorporate dynamic parameterization.

85

1.1 Inserting Dynamic Parametersinto KeyNote's Condition
Assertion Structure.

Keynote as defined in Chapter 111 is made up of various sections. Security
attributes reside in the condition section and are expressed in the form of logical

assertions.

The condition section’s syntax is in the form of a logical statement,
similar to a condition that might be found in an “if statement”. The section is usualy
broken into sub statements by using &&, |, and parentheses to construct logical
conditions. For example the following phrase describes two security proposals supporting
telnet services (service port= 23) using ESP with 3DES for encryption and finger
services (service _port=79) using AH with SHA for authentication:

(local_filter_port =="23" &&
esp_present == "yes' &&
esp_enc_alg=="3des") ||
(local_filter_port =="79" &&
ah present =="yes' &&
ah_auth_alg =="sha") -> “true”’;

1.2 Inserting Dynamic Parametersinto Keynote

Using the above example, the dynamic parameters, network mode and
security level, are added to the condition statement. To properly insert the parameters, it
was essential that the existing logical structure be maintained. This required the
parameters to be added (and properly defined according to policy) to al the existing
conditional expression combinations. Using the previous example with security levels
“high” and “low” and network modes “normal” and “impacted”, the condition phrase is
expanded. Notice that further granularity results in the use of different encryption and
authentication algorithms for each network mode and security level.

(network_mode = “norma” &&

((security_level =“high” &&
((local_filter_port ==“23" &&

esp_present == "yes' &&
86

esp_enc_alg =="3des") ||
(local_filter_port ==“79" &&
ah_present =="yes"' &&
ah_auth_ag=="sha"))) ||
((security_level =*low” &&
((local_filter_port =="23" &&
esp_present == "yes' &&
esp_enc_alg =="des") ||
(local_filter_port ==“79" &&
ah _present =="yes"' &&
ah_auth _ag == "des-mac")))) ||
(network_mode = “impacted” & &
((security_level = “high” &&
((local_filter_port ==*23" &&
esp_present == "yes' &&
esp_enc_alg == "aes’) ||
(local_filter_port ==*79" & &
ah present =="yes' &&
ah_auth_alg =="sha"))) ||
((security_level =“low” &&
((local_filter_port ==“23" &&
esp_present =="yes' &&
esp_enc_alg=="3des") ||
(local_filter_port ==“79" &&
ah present =="yes' &&
ah auth alg == "sha-md5")))) -> “true”;

It becomes obvious that adding parameters to the keynote condition
assertion greatly increases the complexity of each expression. In order to implement and
manage a detailed and complex security policy, a policy editor would be required to
trand ate the assertion’s syntax into a representation that is easier for operators to manage.
Otherwise, the potential for mistakes as a result of the complexity could be very high. See

87

Future Work Chapter Seven for more details on a security policy editor.

Variable precedence should also be considered. Which variable should be
listed first and where is the precedence defined? Fortunately, we have proper logica
expressions and the order and precedence does not matter so long as the combination is
properly constructed and represents all authorized security associations. For example, the
order of nested dynamic parameters, network mode and security level, is not relevant to

the logical outcome of a Boolean query on the condition assertion.
1.3 KeyNote Query Functionality

The next step was to locate the existing KeyNote query calls. By
reviewing the OPenBSD |Psec documentation | was able to determine the following
KeyNote interface mechanism:

[ike_quick_mode.c]

- check policy()
- LK(kn add action()) — loads a tag and its value into the
KeyNote query mechanism. If the same tag is loaded more

than once, only the last instance will be used. Can be used
to overwrite preloaded default values. If the process is
successful it returns a ‘1. Otherwise it returns a ‘0.
(LK(kn_add_action()), OpenBSD Programmer’s Manual
Pages, 2000)

- LK(kn do query()) — performs the Boolean query on

KeyNote on the information loaded into the query
mechanism. If the proposal is accepted, (valid according to
existing assertions in the condition section of KeyNote) a
true value (‘1) is returned. Otherwise a false value (‘0) is
returned. LK(kn do query()), OpenBSD Programmer’s
Manual Pages, 2000)

88

Peer Proposal

Current

KeyNote Query ESP-DES-
Process SHA-PFS
IKE Peer IKE Daemon| g : KeyNote
Connection Interface|
Security KeyNote
Proposal Query Mechanism
Loadin

LK(Kn_add_action())

Figure5.1. Current KeyNote Query Process.
1.4 Dynamic Parameter Input Module

The dynamic input module retrieves the current values of the dynamic
parameters.
1.4.1 Desgn Approach
To provide for system parameter inputs, | implemented a file
input/output (1/0) approach to incorporate the externa parameter input simulation. The
file 1/0O approach method is utilized throughout the current OpenBSD architecture
allowing different processes to communicate with each other. Basically the file approach
involves an interface component writing data or messages to a file and another
component continually polling the file and responding accordingly. The following is the
file location and an example of the syntax used to write and read the dynamic
parameters:
[/usr/src/sbin/isakmpd/dynamic_parameter s]
network_mode = normal

security _level = high

89

1.4.2 Processing Description
The following describes the algorithm utilized to develop my code:
- Declare file variables used to open and read from the file
- Define and declare a structure that can be used to hold the
dynamic parameters. The structure should have the capability to
grow dynamically as required to hold a variable amount of
parameters.
- Read-in dynamic parameters from a file and load them into the
structure accordingly.
1.4.3 Pseudo Code
The following code was inserted into ipsec_quick_mode.c:
- Structure : dynamic_packet. Contains the following variables:
- char* title — character string used to hold the dynamic
parameter title.
- char* symbol — character string used to hold the symbol
S N
- char* value - character string used to hold the dynamic
parameter value.
- Function: struct dynamic_packet package dynamic_parameter s(int *
package counter) - added to ipsec_quick_mode.c to retrieve the
dynamic parameters from a file and load them into an array of
dynamic_packet structure (defined above).
- Input:
- int * package _counter - pointer to integer variable used for the
number of dynamic parameters added to the structure. Pointer used
to be able to return the value to the calling function.
- Output:
- struct dynamic_packet - pointer to array of structures.
- Process:
- Initialize the pointer to an array size of 10

- Open file to read in dynamic parameters

90

- Check for errors in opening the file
-Do-while loop used to read in data until EOF reached or file
reading error occurs.
- Read in from the file expecting the following syntax:
- title <string> symbol <string> value <string>
- Create exactly enough new structure space for the
dynamic parameters and copy values from temp variables
to the structure variables.
- Increment the package counter array of the structure.
- Check to see if the array of dynamic parameters has
reached max size. If so, resize array accordingly.
- Closefile.
- Free temporary memory.
- Return array of structures.
- Code added to check_policy():
- Initialize dynamic parameter array structure
- Cdl package dynamic_parameters() function to read in the dynamic
parameters and store them in an array of structures.
15 Inserting Dynamic Parameters Into The Keynote Query
Functionality

Once dynamic parameters have been retrieved, they can be used in the

KeyNote query process.

1.5.1 Design Approach

The current implementation of IPSEC in OPENBSD utilizes a
policy callback structure for loading the IPSec parameters into Keynote for a query.
This enables fewer lines of code. | attempted to utilize this functionality for inserting
security level and network mode. But | was unable to successfully load all dynamic
parameters into KeyNote query mechanism at once. Instead, | proceed by loading each
system variable individualy into the KeyNote query structure. This is an area that will
require future work to streamline the process. (See Chapter VII).

91

1.5.2. Processing Description and Pseudo Code

The following is the code added to check_poalicy():

- Loop through the array of structures.
- Load dynamic parameters individually using
LK (kn_add_action()) & LK (kn_clos())
- Check for loading errors.

The following (see figure 5.2) is a step-by-step review of the

modified KeyNote Query Process:

— Dynamic
Modified Peer Proposal Perametors
K eygote Query ;S'PA '?DlEzg Seniiy Lot et
I 0OCess ,]

S ;L 3
|KE Peer IKE Daemon ‘ KeyNOte
Connection | nterfacev

4
Security 5 KeyNote
Proposal Query Mechanism

Loadin
LK(Kn_do4gtery())

LK(Kn_add_action()) 6

KeyNote

Figure5.2. Modified KeyNote Query Process.

1 — Peer sends a security proposal to recipient peer during the
security association negotiation phase.

2 — IKE Daemon forwards proposal to KeyNote interface.

3 — KeyNote interface retrieves the current values of the dynamic
parameters.

4 — Mechanism prepares for the security proposal loading.

5 — Dynamic parameter values and security proposal are loaded

into KeyNote query mechanism.

92

6 — Boolean query is performed on KeyNote.

C. REPLACING ISAKMPD.CONF WITH KEYNOTE

To incorporate a complete dynamic functionality into the IPsec mechanism, the
loading process for a valid set of security proposals must be modified to alow for the
injection of the dynamic parameter values. This will ultimately provide further
granularity to the selection of security proposals. To further streamline the management
of the security policy, al security proposals should be derived from
isakmpd.policy/KeyNote. This will require the modification of the existing process of
retrieving the valid set of security proposals from isakmpd.conf.

1 Current isakmpd.conf

isakmpd.conf is used as a configuration file for the isakmpd daemon during
(re)initialization phase of the IPsec mechanism. It provides the initia security
associations and keys used for Phase | of the ISAKMP daemon, and a set of valid
security proposals used in Phase Il for IPsec peer negotiation communication.
(ISAKMPD.CONF(5), OpenBSD Programmer’s Manual, October 1998) When the 1Psec
mechanism is (re)initialized, isakmpd.conf is read and al the information is loaded into

memory

As previoudy discussed in Chapter 111, IPsec Architecture, isakmpd.conf utilizes
the traditiona .ini style file structure and is segregated into sections indicated by “[]”.
Within each section, parameters are defined using the “<tag> = <tag value or range
value>" syntax. Tag values may consist of other section names. This results in a tree-
like structure through the isakmpd.conf file. (ISAKMPD.CONF(5), OpenBSD
Programmer’s Manual, October 1998)

2. Process of Replacing isakmpd.conf with KeyNote

In order to properly modify the current process of loading the valid set of security
proposals to incorporate dynamic parameters and reduce the security policy management
scope to KeyNote, the following must be accomplished. First a method to retrieve the
current values of the dynamic parameters and to inject them into the loading process must
be implemented. Second, the loading process must be modified to alow for the valid set
of security proposals to be retrieved from isakmpd.policy/KeyNote instead of
isakmpd.conf.

93

21 Maodification of the Valid Set of Security Proposal Loading
Process

To successfully achieve the goal of modifying the current implementation
of the loading process of the valid set of security proposals, the following steps had to be
accomplished. First, a review of the current methodology and code was required to
determine the appropriate location for the code modification. Second, an understanding
of the isakmpd.conf configuration loading syntax was required so that security proposals
retrieved from KeyNote could be appropriately trandated. Third it was necessary to
develop the parsing mechanism to retrieve valid security proposals from KeyNote and
properly trandate them, as required, into the form expected by the (re)initiaization
process. Last, the dynamic parameter values had to be incorporated into the security
proposal retrieval process, to allow for further granularity in the selection process.

2.1.1. Review of the Current | mplementation of the
isakmpd.conf L oading Process
Currently isakmpd.conf is read during initiaization of the IPsec
mechanism and the re-initialization is triggered by a change of state.
2.1.1.1 Design Approach

| sakmpd.conf contains information on peers (1P addresses,
Net Masks), IKE phase | parameters (IKE security associations: encryption,
authentication and keys), and IPsec phase Il security proposals. The IPsec mechanism
reads the isakmpd.conf file from the conf.c file located in the /usr/src/sbin/isakmpd/
directory. Thefileisread into a string buffer all at once. The buffer is then parsed, start to
finish, using section tags as indicators of section existence. As information is retrieved it
is stored in memory using a structure list/array.

2.1.1.2 Pseudo Code

The following is a brief step-by-step description of the
process:

- Function: conf _init() — called to begin the initialize phase of the IPsec

Process.

- Storage structure for extracted information from isakmpd.conf is

94

prepared.
- conf_reinit() is caled.
- Functionconf_renit() — called to begin the (re)initialization process.
- file_secrecy () iscalled.
- size of fileisreturned (by reference to int).
- If isakmpd.conf exists.

- isakmpd.conf is opened. Error checking is performed in

theevent of 1/O error.

- Entire contents of isakmpd.conf is read into a string
buffer.

- Fileis closed.
- conf_begin() is caled
- if first call, define static transaction number as 1
and returns.
- Otherwise increments transaction number
and returns.
- conf_parse() called to parse string buffer.
(See conf_par se() description below).
- Otherwise — conf_begin() is called.
- conf_load_defaults() is called. Pre-defined stored
values of security attributes are loaded into memory as
required. In the event of an incomplete load or loading error,
the default values is used.
- Asrequired, memory is freed.

- Function: conf_par se()
95

- While not at the end of buffer, parses the string buffer one line at

atime.
- conf_parse ling() is caled. (See description below).
- Function: conf_parse ling() — parse string buffer one line at atime
- Skips comments demoted by #
- Recognizes section headers.
- Parses sections by tags and values.

- conf_set() is cadled to load tags and values into memory

structure.
(See description below)

- Function: conf-set() — receives transaction number, section name, tag
name, value and other override/default flags. The information is then

stored in a structure for later use.

2.1.2 Syntax Required by the conf.c L oading Process

Conf.c requires a specific syntax for the set of valid security
proposals. Specificaly, it requires that information be broken into sections, tags and tag
values (as found in isakmpd.conf). This information is then loaded into the structure
used to store the security proposal until required. As the information is parsed from the
isakmpd.conf, it is sent to conf_set() function which loads it into memory.

In order to modify the loading process to alow all security proposal
information to be retrieved from KeyNote/isakmpd.policy, a trandation will be required
from KeyNote/isakmpd.policy form to the isakmpd.conf form. Specific syntax
differences between the two forms are as follows:

- Phase Il suite (set of valid security proposals).

- isakmpd.conf — exists in the following syntax:
- Tags separated by dashes (-).
<Phase Mode (QM)>-<ESP or AH>-<Encryption or

Authentication used><other security related attributes>
96

- Additional security proposals are added via comma (,).
- KeyNote/isakmpd.policy — does not exist in simple form. Information exists
within the condition assertion. In order to generate the proper syntax it must be
derived from condition assertion.
- Tag and Tag Vaue
- isakmpd.conf — are a mixture of uppercase and lower case.
- KeyNote/isakmpd.policy — all tag and tag values exist in
lowercase and tag
values are in quotes (*”). All possible tags and section names must
be accounted for to ensure proper capitalization trand ation.
- Assignment symbol
- isakmpd.conf — utilized single equals sign for assignment (“=").
- KeyNotelisskmpd.policy — utilizes double equals signs for
assignment (“==").
- File structure.
- isakmpd.conf — utilizes a sequential file structure with section
tags to differentiate between sections.
- KeyNote/isakmpd.policy — utilizes a logical predicate format.
The information is embedded in a series of && and ||. A method of
assertion trandation will be required to retrieve the require
information.

Some of the information found in isakmpd.conf was not security

policy related. It dealt with other connection-oriented specifics. | decided to leave this

information inside isakmpd.conf. In other words, only the security policy information

was removed from iskampd.conf.

2.1.3. Parsing Mechanism to Retrieve Valid Security Proposals
from KeyNote and Properly Translate as Required

A parsing mechanism is required to retrieve the security proposal

information from the current form of KeyNote's condition assertion and trandate it into

the expected format required by conf.c.

21.3.1 Design Approach

97

The first step in the parsing process was to develop an
algorithm to properly evaluate KeyNote's condition assertions. A few attempts of direct
parsing involving recursive calls and parenthesis counting proved to be too syntax
dependent and unstable.

The next approach relied on the concurrent development of
a DNF parser that would extract embedded security proposals from an assertion and
reconstruct them in the following format (NPS-CS-02-002, January 2002):

(((<tag> == <tag value>) & & (<tag>==<tag value>) &&)||
(((<tag> == <tag value>) & & (<tag>==<tag vaue>) &&)||

2.1.3.2 Processing Description

Given the previous DNF format, the following is the
processing description of the implemented parser:

- Initialize and define alist of structures (linked list/array).
- Read in the DNF security proposd file.
- Parse the file according to security proposals.
- Provide a new structure to store information for each security
proposd.
- Trandate the stored information into the expected isakmpd.conf syntax.
- Load memory with the set of valid security proposals.

2.1.3.3 Pseudo Code

Below is the detailed description of the parsing
implementation. The function call to the KeyNote parsing (conf_kn_parse()) was
inserted in the conf_reinit() in conf.c, after the load_default() function cal. A
description of the implementation follows:

- Suite Struct was used to hold the extracted security proposal
information retrieved from the DNF secuity proposal. The structure
contained all possible entries (within the scope of the research. Note that
potentially, there could be other undefined parameters. This is discussed
further in the Future Work Chapter Seven). Memory for each char string
was dynamicaly created for memory conservation. In other words

memory was allocated as needed throughout the parsing routine.

98

struct suite_struct {
char * suite_name;
char * suite_protocol;
char * suite_transform;
char * protocol _id;
char * transform_id,;
char * encapsulation_mode;
char * group_description;
char * authentication_algorithm;
char * life;
char * life_type;
char * life_duration;
char * network_mode;
char * security level;
char * esp;
char * ah;
char * esp_enc_alg;
char * esp_auth ag;
char * ah_auth_alg;
char * pfs;
char * key_length;
};
- Function: conf_kn_parse() — function called to activate the DNF
security proposal parsing mechanism.
- input: int trans — used for the transaction number for sequential
processing.
- output: void.
- process:
- Array of structures initialized for two security proposals.
The number two was chosen because my testing example

consist of two security proposals.

99

- DNF security proposal file is opened
- Error checking is performed. If the error occurs,
exit routine and return to conf_reinit().
- Utilize technique taken from file_secrecy () function
dat (<file name>, &<size variable>) to determine size of
file to be read. This enabled a dynamic approach to
allocating only enough memory as needed.
- Read in entire DNF file into string buffer.
- Close thefile.
- While not at end of string buffer:
-Search for the first security proposa expression.
The search is performed by searching for the first
occurrence of “(“. An assumption is made that for
every variation of DNF security proposal possible,
they will al begin with “(“.
- DNF_parsg() function is called.
- if 1 (true) is returned then a valid security
proposa was found and the counter is
incremented.
- Check to seeif any valid security proposals were found.
- If so, cal send _to conf set() function to load
valid security proposals into memory.
- Free temporary memory used.
- Function: send_to_conf_set(int trans, char * suite title, char * suite,
struct suite_struct * suite_profile, int struct_size) — this functions sends
parsed information to conf_set in the correct syntax.
- int trans — transaction number.
- char * suite title — holds title for tag defined in previous
function.

- char * suite— holds set of security proposals

100

- struct suite_struct * suite_profile — points to the list/array
of suite structures.
- int struct_size — holds the size of the list.
- Output: None.
- Process:
- Peforms initid conf_set call for the Genera section
including the set of security proposals (suite).
- Loops through the list/array of structures and executes
conf_set in accordance with the information loaded in the
structure.
- No NULL check is performed. It is assumed that a
NULL vaue will not have a negative effect on the
loading process and that the loaded default will be
used instead.
- The following is the standard suite structure is
expected by conf_set():
- [General] section with a Default-Phase-2-
Suite tag and value (set of security
proposals). Sent only once.
- [<suite name>] section with suite protocol
per structure.
- [<suite protocol>] section with protocol id
per structure.
- [<suite transform>] section with
- transform id
- encapsulation mode
- group description
- authentication algorithm
- lifetime
- per structure.

- [<suite lifetime definition>] section with

101

- lifetime type
- lifetime duration

- per structure.

- Function: struct suite struct* struct_initialization (struct
suite_struct * suite_profile) — used to initialize each suite structure.
- Input: - struct suite_struct * suite_profile — holds the pointer to
suite structure.
- Output: - returns the newly initialized structure.
- Process:
- In an effort to minimize wasted memory, al elements of
the structure are initialized to NULL.
- Note: That in order to facilitate dynamic memory use, pointer to
pointer coding syntax at times was required. By having a pointer to
a pointer, memory created in a function will still be resident/within
scope after returning from the function.
- Function: int DNF_par se(char **suite, char *buff_temp, int
* puff_temp_counter, int szkn, struct suite struct *suite profile,
struct dynamic_packet * package, int package size) — Thisfunction
parses each security proposal found.
- Note: That in order to facilitate dynamic memory use,
pointer to pointer coding syntax at times was required. By
having a pointer to a pointer, memory created in a function
will still be resident/within scope after returning from the
function.
- char **suite — holds the set of security proposals. Pointer
to a pointer used to for dynamic memory creation.
- char *buff_temp — string buffer holding the DNF file.

- int* buff_temp_counter — location of parsing index.

102

Pointer to integer is used to alow for pass by reference.
- int szkn — size of file/string buffer.
- druct suite struct *suite profile — pointer to suite
structure.
- Outputs.
- integer
—returns 1 (false) if parse routine successful.
- returns O (false) otherwise.
- Process:
- Note: The methodology used in the following parsing
function is as follows. The parsing is performed on per
character basis. If a character matches the first character of
an expected key word, one of two functions are called:
parse ipsec _para tag() or parse_ipsec_parameter ().
Parse ipsec_para tag() (explained later in detail) is used
for specific tags utilizing Boolean tag values, usualy “yes’
or “no.”
Parse _ipsec_parameter () (explained later in detail) is used
for normal tag and tag value expressions.
- Initialize suite structure;
- While loop with Boolean flag
- The following parsing is performed on a character
by character basis. If the first character matches and
a further string comparison will not cause a buffer-
overflow, then a follow-up routine is caled to
check for the full comparison. If a comparison
match is found, parsing continues in the called
function. If not, function returns and parsing in local
function continues until Boolean flag is set.
- Check for ESP. Call parse ipsec _para tag()

- If ESP is found then dynamic memory is

103

created in the suite s$ructure for the string
IPSEC_ESP.

- Check for ESP encryption algorithm by calling

parse ipsec_parameter() .

- If ESP encryption algorithm is found then
dynamic memory is created in the suite
structure for ESP encryption algorithm.

- Check for ESP authertication algorithm by calling

parse ipsec_parameter().

- If ESP authentication agorithm is found
then dynamic memory is created in the suite
structure for the ESP authentication
algorithm.

- Check for AH by calling parse_ipsec_para_tag().
- If AH is found then dynamic memory is
created in the suite structure for the string
IPSEC_AH.

- Check for PFS by caling

parse_ ipsec para tag().

- If PFS is found then dynamic memory is
created in the suite structure for the string
yes (as found in the Keynote).

- Check AH for authentication agorithm. Call

parse_ipsec_parameter().

- If AH authentication agorithm is found
then dynamic memory is created in the suite
structure for the algorithm. Note that HMAC
is added to the end of the authentication
algorithm. The end result is:
HMAC <Authentication Algorithm> (ie
HMAC_SHA). This is done to conform to

104

the iskampd.conf syntax.

- Check for ESP Group Description by calling

parse ipsec_parameter().
- If ESP Group Description is found then
dynamic memory is created in the suite
structure for the KeyNote version of the
Group Description. The function
group_description_trandation() is then
cadled to convert the dtring into the
isakmpd.conf form required by the
conf_set().

- Check for AH Group Description by calling

parse_ipsec_parameter ().
- If AH Group Description is found then
dynamic memory is created in the suite
structure for the KeyNote version of the
Group Description. The function
group_description_trangation() is then
caled to convert the string into the
isakmpd.conf form required by the
conf_set().

- Check for ESP Encapsulation by calling
parse ipsec_parameter().
- If ESP Encapsulation is found then
dynamic memory is created in the suite
structure for the encapsulation mode.
- Check for AH Encapsulation by caling
parse ipsec_parameter().
- If AH Encapsulation is found then

dynamic memory is created in the suite

105

structure for the encapsulation mode.
- Check for ESP life seconds by calling
parse ipsec_parameter().
- If ESP life seconds is found then dynamic
memory is created in the suite structure and
life_seconds trandation() is caled to
convert the string into the iskampd.conf
format. The converted string is then copied
into the newly created space in the suite
structure.
- Check for AH life seconds by caling
parse ipsec_parameter().
- If AH life seconds is found then dynamic
memory is created in the suite structure and
life_seconds trandation() is caled to
convert the string into the iskampd.conf
format. The converted string is then copied
into the newly created space in the suite
structure.
- Check for ESP life kilobytes by calling
parse ipsec_parameter().
- If ESP life kilobytes is found then dynamic
memory is created in the suite structure and
life_kilobytes trandation() is caled to
convert the string into the iskampd.conf
format. The converted string is then copied
into the newly created space in the suite
structure.
- Check for AH life kilobytes by calling
parse ipsec_parameter().
- If AH life kilobytes is found then dynamic

106

memory is created in the auite structure and
life_kilobytes trandation() is caled to
convert the string into the iskampd.conf
format. The converted string is then copied
into the newly created space in the suite
structure.
- Check for the end of a DNF suite set by checking
for “|”.
- If found then the Boolean flag is set to exit
while loop.
- add_para values() is called to properly
configure the suite.
- Check for end of file. If not found advance
file character index to the next character.
- Return int 1 (true) to indicate successful parsing
iteration.
- Function: void life_kilobytes trandation(char ** life, char
**|ife_type, char **life_duration) — this function is used to convert
lifetime in kilobytes from the KeyNote/isakmpd.policy format to the
isakmpd.conf format.
- Note: That in order to facilitate dynamic memory use,
pointer to pointer coding syntax at times was required. By
having a pointer to a pointer, memory created in a function
will still be resident/within scope after returning from the
function.
- char ** life — holds the initial life time input. Pointer to a
pointer used for dynamic memory allocation.
- char ** life_type — holds the life time type string
KILOBYTES. Pointer to a pointer used for dynamic

memory allocation.

107

- char ** life_duration — holds the life time duration string .
Pointer to a pointer used for dynamic memory allocation.
- Outputs.
- char ** life — used to return life time. Pointer to a pointer
used for dynamic memory allocation.
- char ** life_type — used to return life time type string
KILOBYTES. Pointer to a pointer used for dynamic
memory allocation.
- char ** life _duration — used to return the life time
duration string . Pointer to a pointer used for dynamic
memory allocation.
- Process:
- Thisfunction takes the input value of life and compares it
with predefined life constants. If the constant is found, the
appropriate information is stored in life type and
life_duration. All memory is dynamically created in this
function.
- Check if life equals 1000. If so:
- Free memory used previousdy by life and
dynamically create memory for “LIFE_1000 KB.”
- Dynamically create memory for “KILOBYTES’.
- Dynamically create memory for “1000,768:1356”" .
- Check if life equals 32000. If so:
- Free memory used previously by life and
dynamically create memory for “LIFE_32_MB.”
- Dynamically create memory for “KILOBYTES’.
- Dynamically create memory for
“32768,16384:65536" .
- Check if life equals 45000000. If so:
- Free memory used previousdy by life and

dynamically create memory for “LIFE_4.5 GB.”

108

- Dynamically create memory for “KILOBYTES’
- Dynamically Create memory for
“4608000,4096000:8192000".

- If no match is found, the default load of 1000 is used.

- Function: void life_seconds trandation(char ** life, char **life_type,

char **life_duration) — this function is used to convert lifetime in

seconds from the KeyNotefisaskmpd.policy syntax to the isakmpd.conf

syntax.

- Inputs:

- Note: That in order to facilitate dynamic memory use,
pointer to pointer coding syntax at times was required. By
having a pointer to a pointer, memory created in a function
will still be resident/within scope after returning from the
function.

- char ** life — holds the initial life time input. Pointer to a
pointer used for dynamic memory allocation.

- char ** life_type — holds the life time type string
SECONDS. Pointer to a pointer used for dynamic memory
allocation.

- char ** life_duration — holds the life time duration string .

Pointer to a pointer used for dynamic memory allocation.

- Outputs:

- char ** life — used to return life time. Pointer to a pointer
used for dynamic memory allocation.

- char ** life_type — used to return life time type string
SECONDS. Pointer to a pointer used for dynamic memory
allocation.

- char ** life duration — used to return the life time
duration string . Pointer to a pointer used for dynamic

memory allocation.

Process:

109

- This function takes the input value of life and compares it
with predefined life constants. If the constant is found, the
appropriate information is sored in life type and
life_duration. All memory is dynamically created in this
function.
- Check if life equals 600. If so:
- Free memory used previousdy by life and
dynamically create memory for “LIFE_600 SECS.”
- Dynamically create memory for “SECONDS’.
- Dynamically create memory for “600,450:720".
- Check if life equals 3600. If so:
- Free memory used previousdy by life and
dynamically Create memory for
“LIFE_3600_SECS.”
- Dynamically create memory for “SECONDS’.
- Dynamicaly create memory to for
“3600,1800:7200".
- If no match is found, the default value of 3600 is
used.
- Function: void group_description_translation(char *x
group_description) — this function is used to convert group description
from the KeyNotelisakmpd.policy syntax to the isakmpd.conf syntax.
- Note: That in order to facilitate dynamic memory use,
pointer to pointer coding syntax at times was required. By
having a pointer to a pointer, memory created in a function
will still be resident/within scope after returning from the
function.
- char ** group_description- holds the initia group
description variable. Pointer to a pointer used for dynamic

memory allocation.

110

- Outputs.
- char ** group_description — used to return translated
group_description. Pointer to a pointer used for dynamic
memory alocation.
- Process.
- This function takes the input value of the group
description and compares it with predefined constants. If
the constant is found, the appropriate information is stored
in group_description. All memory is dynamically created in
this function.
- Check if group_description equals 1. If so:
- Free memory used previoudy by
group_description and dynamically create memory
for “MOPD_768"
- Check if group_description equals 2. If so:
- Free memory used previously by life and
dynamically create memory for “MODP_1024"
- Check if group_description equals 3. If so:
- Free memory used previousdy by life and
dynamically create memory for “MODP_155"
- Check if group_description equals 4. If so:
- Free memory used previousy by life and
dynamically create memory for “MODP_185"
- Check if group_description equals 5. If so:
- Free memory used previousdy by life and
dynamically create memory for “MODP_1536"
- If no mach is found, the default vaue of
group_description 1 is used.
- Function: void add_para_values(char ** suite, struct suite_struct **
suite profile)- this function generates the security proposal format

required by the configuration process.

111

- Note: That in order to facilitate dynamic memory use,

pointer to pointer coding syntax at times was required. By

having a pointer to a pointer, memory created in afunction

will still be resident/within scope after returning from the

function.

- Inputs:
- char ** auite - holds the set of security proposals.
Pointer to a pointer used to for dynamic memory creation.
- dtruct suite struct **suite profile — pointer to suite
structure.

- Outputs.
- char ** guite - returns the modified set of security
proposals. Pointer to a pointer used to for dynamic memory
creation.
- dtruct suite struct **suite profile — pointer to suite
structure used to return the modified suite_profile structure.

- Process:
- This function uses the parsed data and generates the
suite/set of security proposalsin the required isakmpd.conf
syntax.
- Dynamicadly creates memory for suite name in
suite_profile structure.
- Checks if suite is large enough for further modification. If
not, memory is dynamically reallocated for the suite.
- If suite has not been alocated memory, default size of
memory is allocated.
- Performs basic error testing. If ESP and AH were not
loaded during parsing routine, then checks to see what
types of agorithms are used to determine if security
proposa uses AH or ESP.

- Check if suite structure parameters are null, if not, use the

112

value to construct the suite list.
- Function: char * convert_to_uppercase(char * lowercase string) —
converts alower case string to an upper case string and returns the string.

- |nput:
- char * lowercase — lower case string.

- Output:
- char * - returns uppercase string.
- Process:
- Loops through the input string capitalizing each character
with the toupper function to convert the string to uppercase.
- Function: void parse ipsec_parameter(char *buff temp, int *
buff temp_counter, char * sys para name, char ** temp_hold, int *
success) — verifies that the tag is the expected tag and then parses the tag
and the tag value, storing information in input suite structure char string.
- char *buff_temp — pointer to the file being parsed.
- int *buff_temp_counter — pointer to index of character in
file being parsed.
- char * sys para_name- pointer to the expected parameter
tag name
- char ** temp_hold — pointer to a pointer (used for the
purpose of dynamic memory allocation) of char string in
suite structure.
- int *success — pointer to an integer used for the success
flag.
-Outputs:
- int *buff_temp_counter — pointer to index of character in
file being parsed is returned via pointer reference. Pointer
may be advance in function.
- char * temp_hold - pointer to a pointer of a character

string (used for the purpose of dynamic memory allocation)

113

in the suite structure returned via pointer reference.
- int *success — pointer to an integer used to hold success
flag returned via reference.
- Process:
- Check to see if expected parameter string matches target
string in string buffer being parsed. If so:
- Advance index pointer in buffer to tag value —
determined by “” in KeyNotelisakmpd.policy
syntax.
- Create dynamic memory in input suite structure
string for the tag value from buffer.
- Copy tag value to input suite structure string.
- Set successflag to 1 (true).
- Convet tag vaue to upper case using
convert_to_uppercase() function.

- If match not found, set success flag to O (false) and exit.

Function: void parse ipsec para tag(char *buff_temp, int *

buff_temp_counter, char * sys para name, char ** temp_hold, int

sys para name reduced, int * success) - verifies that the tag is the

expected tag and that tag value contains “yes’. If so, parsestag and stores

its value in suite structure char string.

- Inputs:
- char *buff_temp — pointer to the file being parsed.

- int *buff_temp_counter — pointer to index of character in
file being parsed.

- char * sys para_name— pointer to the expected parameter
tag name

- char ** temp_hold — pointer to a pointer (used for the
purpose of dynamic memory alocation) of char string in
suite structure.

- int sys para name _reduced — integer that holds the string

114

size of the tag. Either 2 or 3 used for AH, ESP or PFS tags.
- int *success — pointer to an integer used for the success
flag.
-Outputs:
- int *buff _temp_counter — pointer to the index of character
in file being parsed is returned via pointer reference.
Pointer may be advanced in the function.
- char * temp_hold - pointer to a pointer of a character
string (used for the purpose of dynamic memory allocation)
in the suite structure returned via pointer reference.
- int *success — pointer to an integer used for the success
flag returned via reference.
- Process:
- Check to see if expected parameter string matches target
string in the string buffer being parsed. If so:
- Advance index pointer in buffer to tag value —
determined by “” in KeyNoteisakmpd.policy
syntax.
- Check to seeif thetag value is“yes’. If so:
- Use sys para_name _reduced to determine
the appropriate size of the tag for dynamic
memory creation and coping purposes.
- Create dynamic memory for input suite
structure string to hold the tag from the
buffer (i.e. AH, ESP or PFS). Note: the
difference between this function and the
previous one, is that the tag value is copied
as opposed to the tag.
- Copy tag into input suite structure string.
- Set success flag to 1 (true).

- Convert tag value to upper case using

115

convert_to_uppercase() function.

- If match not found, set success flag to O (false) and exit.

Figure 5.3 provides a diagram of the process.

Logical Flow of Functions
for Parsng KeyNate into
isskmpd.conf Syntax.

Struct
KeyNote L
initalization()
Parse ipsec_
%7 paater)

catio s Jomtfove ey | G [P o e

Add para values)) Life_seconds

Load defauit(Translation()

ﬂ \ Group_description |

Send. to,_conf_se(} Trandation()
Convert to_
uppercase()

Conf.c I

Figure5.3. Logica Flow of Functions for Parsing KeyNote into isakmpd.conf Syntax.

2.2 Incorporating the Dynamic Parameters into the Security
Proposal L oading Process

The last step required in the modification of the security proposal loading
process is incorporating dynamic parameters. One mechanism is required to retrieve the
current value of the dynamic parameters. Another mechanism will be required to utilize

these values in the security proposal parsing process described earlier.
2.2.1 Design for Retrieving Value of Dynamic Parameters

Reusing the module implemented for the retrieval of the dynamic

parameters in above section B.1.3, the process retrieves the current value of the dynamic

116

parameters from a file. An important assumption is made here: when the values of the
dynamic parameters change, a process will initiate a reconfiguration to cause the
triggering of the security proposal loading process (in order for the security proposal to
properly reflect the new dynamic parameter values).

2.2.2 Design for Mechanism for Incor porating Dynamic

Parameter Valuesinto the Security Proposal Parsing
Process

A mechanism is required to incorporate the values of the dynamic
parameters during the security proposal parsing process. For efficiency the mechanism
should first scan the DNF security assertion for valid dynamic parameters. If valid values
exist then parsing continues. If not then there are no changes relevant to the query and the
process skips to the next DNF security assertions.

2.2.2.1 Processing Description
The following is the processing description for the

mechanism:

- Load current dynamic parameter values into a memory structure

- Prior to parsing each DNF security proposal assertion, perform a

preliminary scan to check for matching dynamic parameter values.

If a match exists, continue with the parsing process. If not, advance

to the next DNF assertion and return to primary parsing loop to

process next available DNF security proposal assertion.
2222 Pseudo Code

The loading of dynamic parameter values into a memory
structure utilizes the same routine discussed in section B1.3 in this chapter. The following
functions are used to scan DNF security proposals for valid dynamic parameters.

- Function int dynamic_package verification(char * buff_temp, int
*pbuff_temp_counter, int buff _temp_end, struct dynamic packet *
package, int package size, int szkn) — used to check dynamic parameters

of DNF security proposal assertions.

117

- Input:

- char * buff_temp — character string/buffer used to hold
the isakmpd.conf/KeyNote file being parsed.

- int *buff_temp_counter — index used for parsing the
buff_temp.

- int buff_temp_end — index to last character of buffer used
to check for end-of-file (EOF) condition.

- struct dynamic_packet * package — structure that holds

current value of the dynamic parameters.
- int package size — size of array of dynamic_packet
structure.

- int szkn — size of KeyNotefile.

- Output:

- int — used as a Boolean flag to indicate if DNF security
proposal assertion dynamic parameters match. Return O
(false). Return 1 (true).

- Process:
- Loop through the array of the dynamic_packet structure:

- Set temp index pointer to the beginning of the DNF
security proposal assertion.

- Loop through DNF security proposal assertion:

- Check for the first character match of dynamic
parameter tag. Avoid checking beyond the buffer by

using szkn to check for buffer size limit.

- Cdl verify_parameter() function to check rest of
dynamic_parameter tag and tag value. Returns a

flag O-dynamic parameter does not match, 1-

118

dynamic parameter matches , 2- rest of tag does not

match dynamic parameter tag.

- If 0 (dynamic parameter does not match), then
advance to the next DNF security proposal assertion
by caling advance to end DNF() function.
Return to calling function.

- If 1 (dynamic parameter matches) then set loop
flag to exit DNF security proposal assertion loop
and check for other dynamic parameter vaue
matches.

- If 2 (rest of tag does not maich dynamic
parameter tag) then continue searching through

DNF security proposal assertion loop.

- Check for end of DNF security proposal assertion
(check for “|"). If found, set exit flag from loop

searching through DNF security proposal assertion.

- Check for end-of-file (EOF) using szkn parameter.
If found, set exit flag from loop searching through

DNF security proposal assertion.

- Advance buff_temp index counter.

- Check to ensure that al dynamic parameter matches were

found by comparing match counter to number of dynamic

parameters in the array structure.

Function:

- If mach counter and array size equal, return 1
(true) to calling function.

- Else advance buffer index to the next DNF

security proposal and return O (false).

verify_parameter (char *puff_temp, int

119

*pbuff temp_counter, char * Sys para_nhame, char *
sys para valueint buff_temp_end) — checks input dynamic parameter
tag value and if valid, compares tag value with given value. Returns three

possible flag values.
- Input:
- char *buff _temp — string buffer used for KeyNote file.

- int *buff_temp_counter - index of pointer in buff temp
string buffer.

- char * sys para_name — Dynamic parameter tag
- char * sys para value — Dynamic parameter tag value

- int buff temp end — index of end-of-file (EOF) in
buff _temp.

- Output:
- int — flag with the following three values:
- 0 (dynamic parameter tag value does not match)
- 1 (dynamic parameter tag value matches)
- 2 (dynamic tag does not match).
- Process:
- Compare dynamic parameter tags.
- If match found :

-Advance index pointer to the start of

the tag value for further comparison.

- Compare dynamic parameter tag

values:

- If match found, set return
flagto 1.

120

- Else (match not found) set
return flag to O.
- Else set return flag to 2.

- Return flag.

- Function: DNF_parse() — previously described above in section
B.2.2.3.3, required additional modifications to fully incorporate the
dynamic parameter functionality. The modifications are listed below:

- Prior to perform parsing, acall to
dynamic_package verification() function is made
to determine if DNF security proposal assertion is
valid in accordance to current dynamic parameters.
If so parsing process continues. If not function
skips parsing process and returnsto calling

function (which will advance to the next DNF security

proposal assertion if EOF is not reached).

Figure 5.4 provides a diagram of the process.

121

L ogical Flow of Security Proposal
Parsing and L oading Processwith
a Dynamic Parameter
I nterface.

Package dynamic_ > -
Par ameter () initalization()
Parse_ipsec_
ﬁ parameter()
Conf_kn_parse() [DNF_parss() <:> Parse_ipsec_ Lie kilobytes_
Para_tag() / Translation()
\N Add_para \ values() Life_seconds_
Load_defauiltt() Trandation()
ﬂ dynam' C_paCkage \ Group_description_|
verlflcatlon() Translation()
Send_to_conf_set()
ﬂ N Convert_to_
uppercas()

Test_for
| refo | et verlnyJarameter()
Conf.c oubie)

Figure5.4. Logica Flow of Security Proposal Parsing and Loading Process withthe
Added Dynamic Parameter Interface.

2.3 Additional Modificationsto Further Fine-tune Security
Proposal L oading Process
To ensure the security proposal loading process runs smoothly, further

fine tuning mechanisms are required. First a default value loading mechanism must be
inserted to ensure that proposals that have incomplete fields are filled with default values.
Second, the possibility of having more than one identical security proposal must be
appropriately handled. Duplicates may result from the added granularity in the security
proposal definitions caused by the inclusion of dynamic parameter field attributes into
KeyNote.

2.3.1. Default Value Loading M echanism

In the event of an incomplete security proposal, default values are
required to fill the holes in the proposal. This will help to avoid a runtime system crash
and/or unstable secure communications. To accomplish this, a default policy must be
determined to handle all cases. The mechanism can then either utilize the whole default
policy (in cases where insufficient policy is successfully parsed) or portions of the default
policy (in cases where security policy isonly partialy defined).

122

The following security policy was determined to be default policy. Note: the

default setting 5 set to the least upper bound of al possible proposals providing the

highest level of security.
- ESP protected | Psec protocol
- Encryption agorithm: AES
- Authentication Algorithm: SHA

- Utilizing perfect Forward Security

- Transportation Mode: Tunnel
- Life: 3600 seconds
- Group description: MODP_1024

default loading:

2.3.1.1 Processing Description

The following is the processing descriptionused to perform

- After al parsing has been performed, check to seeif any valid
security proposals were created:
- If so call send_to_conf_set().
- Peform a validity check to ensure that enough security
parameters exist for the security proposal to be valid:
- If enough parameters exist, continue loading parameters with
conf_set().
- If not, abort and call load_defaul _sa() to load
default security proposal.
- While sending the security proposal parameters to conf set(),
check for empty required parameters. If any are found, fill them
with the appropriate values from the default security proposal
structure.
- Elseload full default security proposal structure.

2.3.1.2 Pseudo Code

The following is a description of the pseudo code:

- Function: struct suite struct * initialize_default_suite profile(struct

suite_struct *temp_ss) —initialize a default suite structure.

123

- struct suite_struct *temp_ss— pointer to structure to be
initialized and loaded with default parameters.

- Outpult:
- struct suite_struct * - pointer to structure to be returned.

- Process:
- create just enough memory as required and copy default
string values into structure character strings.
- return the pointer to the structure.

- Function: void load default_sa(int trans,char * section, char *

title,struct suite_struct* default_suite profile) — loads default security

proposal into
conf_set().
- Input:
- int trans — transaction number required for conf_set()
- char * section — character string defined in calling
function

- char * title— character string defined in calling function
- struct suite_struct* default_suite profile — default
suite structure for the default security proposal
parameters.
- Output:
- void
- Process:
- Cdll conf_set() using the default values from the default
suite structure to load default security proposal into
memory.

- Modification to Function: send_to_conf_set(....,struct suite struct *

default_suite profile) — modifications to send_to conf previousy
described will be required to handle default loading of parameters for

incomplete security

124

proposals.
- Input:
- struct suite_struct * default_suite_profile — structure
for default security proposal.
- Output: void.
- Process:
- Test if no suites were defined. If so, abort and call
load_default_sa()
- Cdl test_suite_structure() to verify that parsed security
proposal (s) contains sufficient parameters to be used:
- If O (false) isreturned, abort and call load_default_sa()
- If 1 (true) is returned, continue.
- Loop through array of security proposals:
- Verify that each required parameter has a value.
- If not, use the default structure to load appropriate
default value.
- If s0, continue.
- Cdl conf_set() as needed to load security
proposd.
- Function: int test_suite structure(struct suite struct *
suite profileint struct_size) — used to verify that suite structures contain
sufficient parameter to be valid.
- Input:
- struct suite_struct * suite_profile — pointer to list of
security proposal structures.
- int struct_size—size of array list
- Output:
- int — Boolean return flag: O (false), 1 (true).
- Process:
- Loop through the list of security proposal structures.
- Test if suite_ nameis NULL. If so, abort and return false.

125

- Test if protocol_id isNULL. If so, abort and return false.
- Test if transform_id is NULL. If so, abort and return false.
- Return true.

Figure 5.6 provides a diagram of the process.

rity Proposal
‘ Default Loading
g Process

Conf k
Conf ¢ | | Conf kn parse)
II Initialize_default

Send._to_conf_set() @ Suite_profile()

1

L oad_default_sa() Test_suite_structure()

Figure5.6. Security Proposal Default Loading Process.

2.3.2 Mechanism To Handle Duplicate Security Proposals
With the incorporation of dynamic parameters into the KeyNote
structure, the possibility of duplicate security proposals being generated exists. To
maintain an efficient security process, a mechanism must be implemented that ensures
that duplicate security proposals are not generated. To efficiently manage this problem,
the mechanism must be inserted into the parsing process so that it will skip ahead to the
next DNF security proposal when aduplicate security proposal is recognized.
2.3.2.1. Processing Description
Once valid security proposals have been initialy parsed
from KeyNote, afunction is required to eliminate duplicate security proposals.
The following is the processing description of the

126

procedure used to check for and handle duplicate security proposals:

- The process will utilize a list of parsed security proposals. As
new security proposals are added, they must be compared to the
current members of the list to check for duplication.
- In order to check for duplicates, the parsed security parameters
must be checked. The following are the security parameters used
for the proof of concept in this research:

- ESP encryption algorithm

- ESP authentication algorithm

- AH authentication algorithm

- encapsulation mode

- group description

- lifetime

- Perfect Forward Security

- Key Length

2.3.2.2. Pseudo Code
The following is a description of the pseudo code:
- Function: int duplicate sa (struct suite struct * suite list, int
suite_count,struct suite struct *suite_profile) — compares the security
proposals list with new security proposal for duplicates.
- druct suite struct * suite list — pointer to a security
proposal list/array.
- int suite_count — number of security proposal in the
aray.
- dtruct suite_struct *suite profile — pointer to the new
security proposal.
- Output:
- Int — used as Boolean flag. Returns 1 (true) if new

security proposal is a duplicate. Returns false if new

127

security proposal is not a duplicate.
- Process:

- For loop is used to traverse the array of security
proposals.
- Each member of the array is compared with the new
security proposal. The elements of the security proposal are
compared via strcmp() utilizing the embedded if/else
statements. For each strcmp test, aNULL test is performed
first in the if statement to avoid a potential rurn-time error
(caused by stremp(NULL)). If NULL is found, the rest of
the strcmp test is by-passed and the next if statement is
executed. This continues until all security proposal
conditions are checked and found to be identical or not. If
the process successful passes all if nested statements, true
(2) is returned to the caling function indicating a the new
security proposal is a duplicate. Otherwise, the function
continues checking all security proposals in the array. |If
the complete array has been checked without finding a
duplicate, fase (0) is returned to the calling function. The
elements of the security proposal checked are:

- AH Authentication algorithm (ah_auth_alg).

- Encryption agorithm (esp_enc_alg).

- ESP Authentication agorithm (esp_auth_alg).

- Encapsulation mode (encapsulation_mode).

- Group description (group_desription).

- Lifetimetitle (life).

- Lifetimetype (life_type).

- Lifetime duration (life_duration).

- Key length (key_length).

- Figure 5.7 provides a diagram of the process.

128

urity Proposal
‘ Duplicate Checking

Process

Conf_kn_parse()

ﬁ Add_para_values()

DNF_parse() @ ﬁ

Duplicate sa()

Figure5.7. Security Proposal Duplicate Checking Process.

D. CONCLUSION

This chapter described the implementation of dynamic parameterization of
IPsec, and includes the methodology, processing description, and pseudo code
summaries for each component. The goal was to modify the current OpenBSD
implementation of IPsec to incorporate additional fields representing dynamic
parameters. The modification was performed in two phases. the first provided
granularity to KeyNote/isakmpd.policy, and the second streamlined and incorporated
parameterization into the isakmpd.conf-KeyNote security proposal set loading process.
Additional error-checking functionality was added for security proposal duplicates, and
for incomplete security proposals. These included the capability of loading default fields
and proposals as required.

To demonstrate the work represented in this chapter, an interface was required.
In the following chapter | will discuss the design and implementation of a Java graphica
user interface that enables users to run IPsec while invoking dynamic parameters to

adjust security parameters in accordance with the security policy.

129

THISPAGE INTENTIONALLY LEFT BLANK

130

VI. GRAPHICAL USER INTERFACE (GUI) DEMOSTRATION

A. INTRODUCTION

The current implementation of OpenBSD |Psec requires a complex sequence of
commands via command- line prompts to establish a secure connection between peers. In
the event of a dynamic parameter change requiring the reconfiguration of 1Psec, a series
of commands and scripts are used. This procedure is very time intensive and requires
considerable operating system and environmental knowledge. Also, the process of
demonstrating the results of this thesis was challenging without an available graphical
user interface (GUI) representation. As a result, a more user-friendly graphical oriented
interface was designed and developed to alow users, with limited knowledge of
OpenBSD operating environment, to operate and observe the security mechanism and its

dynamic parameterization.

This chapter will review the existing command line environment and will describe
the Graphical User Interface (GUI) to simplify |Psec control and use.
B. COMMAND-LINE ENVIRONMENT

The OpenBSD operating environment, true to its UNIX roots, is controlled via the
command-line for most operations. The typical commands used for operating the IPsec

mechanism are explained below.
The following sections are referenced from

(http://www.openbsd.org/fag/fagl3.html).
1 | Psec System Flush
Prior to initializing and starting the IPsec process, all previous security

associations and security rules need to be removed from all databases and cached
memory. This will allow new security associations to be generated. This clean-up and
refresh processis called a“flush”. The syntax for the command is: ipsecadm flush.

2. Setting Up and Mounting the Security Policy Database

Prior to starting the 1Psec process, the Security Policy Database (SPD) must be
populated with a cached version of the peer connection and security attributes. Otherwise

the IPsec will not properly secure network communications in accordance with the

131

defined security policy. In order to do so, two tasks must be performed: setup I Psec flows
and mount the security policy database in the kernel (SPD). Note, that the SPD is updated
periodically, with new security association (SA) security parameter index (SPl)
references after successful peer negotiations are completed. The information found in the
SPD can be derived from iskampd.conf (IPsec configuration file) and iskampd.policy
(KeyNote). Future research should be performed to design a method of automating the
population of the security policy data base based on entries found in isakmpd.conf and
iskampd.policy. (See Future Work Chapter Seven). Note that security associations (SA)
may also be entered manually. However, this was not within in the scope of my research

and, therefore, | did not include manual keying in the design or implementation.

To set up IPsec flows, the following information is required:

- Protocol type (ESP/AH).

- Destination |P address.

- Transport port (indicates the method of communication i.e. Finger or Telnet) .
- Source IP Address.

- Direction (In or Out).

- Policy Action (Deny, Allow, Require, Acquire).

- SPI (Security Parameter Index) — will be generated and inputted after
SA’s are created from peer negotiations.

The syntax to create |Psec flows is as follows:
ipsecadm flow -proto -dst -spi -transport -src -<direction> -<Policy Action>.
Flows can be generated manually via the cmmand prompt calls or via a script.
Below is the example of the IPsec flow script used in the testing phase of this
thesis. The script is executed by the following syntax: sh vpn_28 ah_a (name of

the saved file listed below).

#!/ bi n/ sh

#Set-up flows for the two specific hosts

#Use for defining applications FINGER and TELNET
ESP for TELNET

AH for FI NGER

-dport for egress traffic

-sport for ingress traffic

Local and renote hosts
LOCAL_HOST=131.120.8.91

132

REMOTE_HOST=131. 120. 8. 95
i psecadn¥/ sbi n/ipsecadm

#
Create the host-to-host flow
#

#egress flow for finger
$i psecadm fl ow -dst $REMOTE_HOST -proto ah \
- addr $LOCAL_HOST 255. 255. 255. 255 $REMOTE_HOST
255. 255, 255. 255 \
-transport tcp -dport 79 \
-src $LOCAL_HOST -out -require

#ingress flow for finger
$i psecadm fl ow -dst $REMOTE_HOST -proto ah \
- addr $REMOTE_HOST 255. 255. 255. 255 $LOCAL_HOST
255. 255, 255, 255 \
-transport tcp -sport 79 \
-src $REMOTE_HOST -in -require

#egress flow for telnet
$i psecadm fl ow -dst $REMOTE_HOST -proto esp \
- addr $LOCAL_HOST 255. 255. 255. 255 $REMOTE_HOST
255. 255, 255, 255 \
-transport tcp -dport 23\
-src $LOCAL_HOST -out -require

#ingress flow for telnet
$i psecadm fl ow -dst $REMOTE_HOST -proto esp \
- addr $REMOTE_HOST 255. 255. 255. 255 $LOCAL_HOST
255. 255. 255. 255 \
-transport tcp -sport 23\
-src $REMOTE_HOST -in -require

exit O

Note: When creating scripts within the OpenBSD environment, it is

important to remember the following steps:

- chmod 755 <script name> is used to change the scripts default
permissions and enable the script to be executed.
- /<script name> is the syntax for executing a script.

Once the IPsec flows have been created, they need to be mounted in the
kernel (SPD). The following is the syntax required: mount -t kernfs /kern
/kern.

3. | Psec Execution

To start the |Psec mechanism there are numerous syntaxes possible, depending on

133

the level of debugging desired. Since OpenBSD’s IPsec is still considered to be under
development, a debugging mode is very useful to examine functionality and operation.
The following are typical syntaxes:

- isakmpd — starts the IPsec mechanism without any debugging functionality.

- isakmpd -d -DA=99 — dtarts the IPsec mechanism with full debugging

functionality. All levels of deugging messages will be displayed.

- isakmpd -d -DA=99 -D1=<Debug Number > - starts the | Psec mechanism with

limited debugging functionality depending on the given debug number.

4, | Psec Connection Termination

There are numerous methods for terminating an existing |Psec connection. One
way involves using CTRL-C in the shell to terminate the IPsec process and established
connections. A similar result can be achieved by ssmply killing the IPsec process from
the process list. This is performed by using ps —al to locate IPsec process id and then

using Kill <id number> to terminate the process.

A gentler approach allows the user to terminate security association connections
individually. In case the user must track the SA connection number index. The typical
progression of index numbers starts at zero and advances by one for both new
connections and terminations. For example, the generation of an SA for telnet
communication between two peers advances the index number to from zero to one. The
generation of another SA for finger communication between two peers advances the
index from one to two. The termination of an existing SA (either of the previoudy
generated SAs) advances the index from two to three. The termination of the last SA
advances the index from three to four. This process continues until the 1Psec mechanism
is halted, which resets the index to zero.

5. Display SPD

During development, it often becomes necessary to review the entries currently
existing in the SPD. The command-line method to perform this is based on the UNIX
netstat command, which displays routing tables. By refining the command using
switches, it is possible to display only the routing information specific to the IPsec

mechanism. The syntax is as follows. netstat -rn -f encap

The following is an example of netstat —+n —f encap between two peers for telnet
134

and finger communications:

Routi ng tabl es

Encap:

Sour ce Port Destination Port Proto SA(Address/ Proto/ Type/ Direction)
131. 120. 8. 95/ 32 23 131. 120. 8. 91/ 32 0 6 131.120.8.95/50/ require/in
131.120. 8. 95/ 32 79 131.120. 8. 91/ 32 0 6 131.120.8.95/51/require/in

131. 120. 8.91/ 32 0 131. 120. 8. 95/ 32 23 6 131. 120. 8. 95/ 50/ r equi r e/ out
131.120. 8. 91/ 32 0 131.120. 8. 95/ 32 79 6 131. 120. 8. 95/ 51/ requi r e/ out

6. Display SAD

To ensure that the 1Psec mechanism is working properly, it is often important to
view the existing security associations (SA’s) stored in the SAD. The Open BSD |Psec
mechanism stores the SPD in the following file: /kern/ipsec.

When no SA’s exist in the file, the file contains the following entry:
Hashmark: 31, policy entries. 0.
When, for example, two SAs exist (one for telnet and the other for finger

communication) the /kern/ipsec file contain the following:

Hashmask: 31, policy entries: 4
SPI = ¢322801f, Destination = 131.120.8.91, Sproto = 51
Est abl i shed 55 seconds ago
Source = 131.120.8.95
Fl ags (00001082) = <tunneling>
Crypto ID: 4
xform = <l Psec AH>
Aut henticati on = <HVAC- SHA1>
577 bytes processed by this SA
Expirations:
Hard expiration(1l) in 3545 seconds
Soft expiration(l) in 3185 seconds
SPI = bd35c¢96d, Destination = 131.120.8.95, Sproto = 51
Est abl i shed 55 seconds ago
Source = 131.120.8.91
Fl ags (00001082) = <tunneling>
Crypto ID: 3
xform = <l Psec AH>
Aut hentication = <HVAC- SHA1>
446 bytes processed by this SA
Expirations:
Hard expiration(1l) in 3545 seconds
Soft expiration(l) in 3185 seconds
SPI = 9dde8del, Destination = 131.120.8.91, Sproto = 50
Est abl i shed 66 seconds ago
Source = 131.120.8.95
Fl ags (00001082) = <tunneling>

135

Crypto ID: 2
xform = <l Psec ESP>
Encrypti on = <3DES>
Aut henti cati on = <HVAC- SHA1>
1248 bytes processed by this SA
Expirations:
Hard expiration(1l) in 1134 seconds
Soft expiration(l) in 1014 seconds
SPI = 95bb697c, Destination = 131.120.8.95, Sproto = 50
Est abl i shed 66 seconds ago
Source = 131.120.8.91
Fl ags (00001082) = <tunneling>
Crypto ID: 1
xform = <l Psec ESP>
Encrypti on = <3DES>
Aut henti cation = <HVAC- SHA1>
1408 bytes processed by this SA
Expirations:
Hard expiration(1l) in 1134 seconds
Soft expiration(1l) in 1014 seconds

7. tcpdump

To verify packet security (either through encryption and/or authentication), a
packet sniffer tool can be used to enable the user to view exchanged packets. Tcpdump,
a packet sniffer utility, is available on OpenBSD. Syntax for the command is: tcpdump —
N host <peer A |P address> and <peer b IP address>.

The —N switch is used to reduce Domain name qualification to make output more
readable. The host switch to identify peer |P addresses.
C. GRAPHICAL USER INTERFACE (GUI) DEMONSTRATION

For many users, the above sequence of commands may be overwhelming and
time consuming. A graphical user interface (GUI) would reduce the level of confusion
and make the 1Psec mechanism easier to control and use.

1 Goal

The goa of the GUI demonstration is to provide users with an ability to
demonstrate and use the IPsec mechanism, and fully understand the successes in research
and development that have been performed in this thesis.

2. M echanism of Demonstration

Java was chosen as the demo’s development language because of its inherent
graphical representation ability. OpenBSD utilizes Kaffe's version of Java. In order to
incorporate the full graphical capability of Java, a “Kaffe-friendly” SWING package was
installed.

136

2.1 Run Time Execution of Shell Commands from Parent Java Process

The following section is referenced from
(http://java.sun.com/products/jdk/1.2/docs/api/)

The demonstration module requires the ability to execute command-line
cals. Thisis accomplished by using the following:

- Static declaration of an instance of RunTime: Static Runtime rt. Every

Java application has a single instance of the RunTime class. This instance

enables the application to execute command-line calls from within the

application. It is important to note that an application cannot create itsown

instance of the RunTime class.

- Use of an array of strings to construct a shell script command to enable
run time execution. In order for a command to be executed properly, the
command must be incorporated into a string. The following example

demonstrates a run time execution of |1 Psec:

private static Runtime rt;

String[] s2 = new String[3];

s2[0]= new String(*/bin/sh”);

s2[1] = new String(*-C”);

s2[2] = new String(“ipsec”);

rt.exec(s2);
- Some commands require switches and additional data in order to be
executed properly. In this case, there are two methods that are used in this
research:
- Command, switches and additional data are included in one string. An
example of thisisthe use of the ps command (i.e. ps-ax | grep isakmpd |
grep -v grep).
- Command, switches and additional data are broken into separate string in
the array. An example is the use of tcpdump command (i.e. tcpdump -N
131.120.8.95 and 131.120.8.9.

- If certain commands require immediate execution without the parent

137

routine proceeding in command execution, waitFor method can be added
to the exec(<string>) to pause the process until the shell commands
completes its processing. The following example demonstrates a run time
execution of the IPsec flush routine, which would require the parent
process to wait until shell’s completion:
private static Runtime rt;
String[] s2 = new String[3];
s2[0]= new String(*/bin/sh”);
s2[1] = new String(“-C”);
s2[2] = new String(“ipsecadm flush”);
rt.exec(s2);
- All runtime calls require try-catch blocks.
- To receive the current instance of Runtime, the following is the syntax is
used: rt = Runtime.getRuntime();
Execution of all command line calls must utilize the RunTime class and methods.
2.2 Graphical Demonstration Components
The demo corsists of the following components:
- Welcome Screen — provides the user with a demo title screen
with the ability to incorporate logos and credits as needed.
- Main Menu Console — provides the user with all available IPsec
choices, and dynamic parameter console:
- Start I Psec— initiates the | Psec mechanism.
- Display SADB - displays current valid security
associations.
- Display SPD — displays contents of the SPD.
- Display TCPDUMP — provides the user with a Java
JFrame console to view the output of tcpdump.
- Dynamic Parameter console — provides user with a
console to make a selection on the dynamic parameters.
- Display Current Security Policy — provides the user

with a console to view the current security policy in

138

isakmpd.policy/KeyNote.
3. Graphical Demonstration Components
The following sections describe in some detail each of the above listed menu
choices. The functionality of the demo is broken into the following java classes:
- Demo.java — creates the demo welcome screen and the menu choices in
aJava JFrame console.
- Demo_Support_Functionsjava — holds al functions used by other
classes.
- DP_Consolejava — creates dynamic parameter selection interface in a
Java JFrame console.
- Ipsec_Info.java — creates a continuously updated output of the security
association database (SAD) in a formatted Java JFrame console.
- Tcpdump.java — creates a continuously updated output of the network
packets captured by tcpdump in Java JFrame console.
- SPFK.java — creates a Java JFrame console for formatting and
displaying the security policy found in iskampd.policy/KeyNote.
- SPD.java - creates a Java JFrame console for formatting and displaying
the security policy found in the security policy database (SPD).

3.1. demo.java

This class creates and handles the generation of the welcome
screen and menu choices.

3.1.1 Design Approach

The initial design was to incorporate both the OpenBSD and NPS
CISR logos on the welcome screen. However, Kaffe's java library did not properly
support graphic logos (i.e. jpegs, bmp, .gif files). Therefore, the welcome screen consists
of large font title and a continue button.

The menu screen consists of buttons allowing the user to make
selections using a mouse. The menu also has an error checking display, which provides
the user with feedback as necessary. Further details on error checking will follow.

3.1.2 Processing Description

The following is the processing description for the method:

139

- A welcome Java JFrame console is generated with a title and a

continue button linked to an action handler.

- Once the user selects the continue button, the welcome screen is

erased and the menu choice JFrame is painted.

- The menu JFrame provides the user with menu selections via

buttons:
- Start IPsec — starts the 1Psec mechanism. If the IPsec
mechanism is already started, an error message is displayed
in the error message display panel.
- Display SAD — starts the ipsecinfo.java thread to provide
the user with a continuously updated display of the
currently existing security associations (SA) via a JFRame.
- Display SPD — creates a formatted display for the
currently existing entries in the Security Policy Database
(SPD) viaa JFrame.
- Display Security Policy - parses
iskampd.policy/KeyNote and displays information in a
JFrame.
- Display TCPDUM P — starts the tcpdump mechanism
and displays continuous output in a Java JFrame.
- Dynamic Parameters I nterface — provides the user with
a console to select and submit dynamic parameters. If the
user does not select two dynamic parameters prior to
pressing the submit button, an error message is displayed in
the error display panel.

3.1.3 Pseudo Code

The following is a description of the pseudo code used in

demo.java:

- Class: demo extends JFrame.
- Variables used throughout the class, are declared as
Global.

140

- Method: demo class constructor — initializes the welcome
screen.
- Initializes title to JFrame
- Adds a window adapter to handle window exiting
by calling dispose().
- Creates welcome message and displays on JFrame.
- Creates the error display panel.
- Creates continue button with an action handler.
- Initialize menu choices JFrame title and buttons.
- Method: initialize_connection_index _file() — resets
connection index counter to zero in the connection index
counter file.
- Input: none.
- QOutput: rone.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates a file pointer, file output stream
and a print stream to
/r oot/demo/connection_number
- Writes the number “0” to the file.
- Closesthefile.
- Method: load_dp_file(String nm, String sl) — accepts
network mode and security level inputs and writes them
into the dynamic parameter file.
-Input:
- String nm- network mode value.
- String 9 — security level value.
- Output: none.
- Process:

- The following process is enclosed in a try-

141

catch block.
- Creates a file pointer, file output stream
and a print stream to
lusr/src/sbin/fisakmpd/dynamic_paramete
rs
- Writes the network mode value and
security level value to the file in the
following format:
network_mode = <network mode value>
security level = <security level value>
- Closesthefile.
- Class: ContinueButtonHandler implements ActionListener
- Method: actionPerformed(ActionEvent €) — action
handler for the continue button on the welcome JFrame.
- Process:
- FErases existing components on the
Welcome JFrame.
- Creates menu title, menu choices buttons
and displays on menu choices JFrame.
-Adds an action handler to all buttons.
- Class: SPButtonHandler implements ItemListener
- Method: actionPerformed(ActionEvent €) — action
handler for the start | Psec button.
- Process:

- Checks to see if IPsec is currently running
by calling demo_support_functions
.daemon_running().
- If IPsec is aready running then displays
error message in error display panel and exit
handler routine.
- Otherwise, proceeds.

142

- Loads default network mode and security
level values using load_dp_file().
- Flushes the IPsec mechanism of previous
existing security associations (SA) by
calling
demo_support_functions.flush_ipsec().
- Mounts the kerned by calling
demo_support_functions.mount_kern().
- Loads the SPD policy values by calling
demo_support_functions.load_spd().
- Class: DSButtonHandler implements ActionListener
- Method: actionPerformed(ActionEvent €) — action
handler for Display SAD button.
- Process:
- Instantiates and start ipsecinfo.java thread.
- Class: SPDButtonHandler implements ActionListener
- Method: actionPerformed(ActionEvent €) — action
handler for Display SPD button.
- Process:
- Instantiates SPD.java class to display the
SPD.
- Class: DSPButtonHandler implements ActionListener
- Method: actionPerformed(ActionEvent €) — action
handler for Display Security Policy button.
- Process:
- Instantiates SPFK .java class to display the
Security Policy.
- Class: TCPButtonHandler implements ActionListener
- Method: actionPerformed(ActionEvent €) — action
handler for Display tcpdump button.

- Process:

143

- Instantiates and start tcpdump.java thread.
- Class: DPButtonHandler implements ActionListener
- Method: actionPerformed(ActionEvent €) —
action handler for Dynamic Par ameterization button.
- Process:

- Instantiates dp_console,java.

- Class: INFButtonHandler implements ActionListener— action
handler for Stop | Psec button.
- Method: actionPerformed(ActionEvent €) — action
handler for Exit menu.
- Process:
- Checks to see if IPsec is currently running
by cdling demo_support functions.
daemon_running().
- If so, then tears down existing connections
by cdling demo_support_functions.
Tear_down_connections() and stopS the
| Psec mechanism by calling
demo_support_functions.stop_ipsec().
- Class: EXButtonHandler implements ActionListener— action
handler for Exit button.
- Method: actionPerformed(ActionEvent €) — action
handler for Exit menu.
- Process:
- Checks to see if IPsec is currently running
by cdling demo support_functions.
daemon_running().
- If so, then tears down existing connections
by cdling demo support functions.

Tear_down_connections() and stopS the

144

| Psec mechanism by calling
demo_support_functions.stop_ipsec().
- Exits the program.

- Method: static main(String args) — the main program of

the demo class.

- Process:

- Gets the current runtime instance by
calling getRuntime().

- Initiates the demo.java class.

3.2. demo_support_functionsjava
This class holds commonly used functions by the other classes.
3.2.1 Design Approach
In accordance with proper software engineering techniques,
commonly used functions should be shared among classes. This will reduce the code
length and make code management easier. This module includes those functions.
3.2.2 Processing Description
No processing description is necessary since this class performs no
tasks other than hold al functions used by other classes.
3.2.3. Pseudo Code
The following is a description of the pseudo code for
demo_support_functionsjava:
- Class: demo_support_functions.
- Variables used throughout this class, are declared as
Global.
- Method: demo_support_functions constructor.
- Process:
- Gets the current instance of Runtime by
caling Runtime.getRuntime() .
- Method: flush_ipsec() — generates the run time

commands to flush the 1Psec mechanism.

145

- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section B 2.1 in this chapter for more
details) of ipsecadm flush.
- Note that waitFor() is required since it is
necessary for the parent process to wait for
its compl etion.
- Method: load_spd() — generates the run time commands
to load SPD with the security policy.
- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section 2.1 for more detail) of sh
vpn28 ah a..
- Note that waitFor () is not required since it
is not necessary for the parent process to
wait for its completion.
- Method: mount_kern() — generates the run time
commands to mount the kernel.

- Input: none.

146

- Output: none.

- Process:
- The following process is enclosed in a try-
catch block.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section 2.1 for more detal) of sh
/root/mount_kern. This is the name of a
script that contains the following code:
mount —t kernfs/kern /kern.
- Note that waitFor() is not required since
the it is not necessary for the parent process
to wait for its completion.

- Method: start_ipsec() — generates the run time commands
to start the ipsec mechanism.

- Input: none.

- Output: none.

- Process:
- The following process is enclosed in a try-
catch block.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section B 2.1 in this chapter for more detail)
of sh /root/mount_kern. This is the name
of a script that contains the following code:
ipsec.
- Note that waitFor() is required since it is
necessary for the parent process to wait for

its compl etion.

147

- Method: stop_ipsec() — generates the run time commands
to stop the IPsec mechanism.
- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates afile pointer and file input stream
to /var/run/isakmpd.pid.
- Reads in the process id found in the file,
which will be used to kill the IPsec process.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section 2.1 for more detal) of sh
/root/mount_kern. This is the name of a
script that contains the following code: Kill
<processid>
- Note that waitFor() is required since it is
necessary for the parent process to wait for
its completion.
- Closesthefile.
- Method read_connection_index_file()— reads in the
current value of the index counter from afile.
- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates a file pointer and file input stream

to /r oot/demo/connection_number.

148

- Reads in the current connection index
counter and store in a globa variable.
- Closesthefile.
- Method: write_connection_index_file()— writes the
current value of the index counter to afile.
- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates a file pointer, file output stream,
and print stream to
/root/demo/connection_number.
- Writes the current connection index
counter and store in a global variable.
- Closesthefile.
- Method: daemon_running() — checks to see if the IPsec
process is currently running.
- Input: none.
- Output:
- Boolean result — true if 1Psec is currently
running and false otherwise.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section 2.1 for more detail) of sh
/root/mount_kern. This is the name of a

script that contains the following code: ps -

149

ax | grep isakmpd | grep -v grep >
daemon_sear ch. This command performs a
ps list (active processes) and then retrieves
only the entries that have the word iskampd
and pipes them into daemon_search file.
The switch —v grep removes the cal from
the ps listing.
- Note that waitFor() is required since it is
necessary for the parent process to wait for
its completion.
- Creates a file pointer and file input stream
to /root/demo/daemon_sear ch
- Retrieves the current file size of
daemon_search.
- If the file size is zero, the IPsec mechanism
is not running. Returns false.
- If the file size is greater then zero, the
|Psec mechanism is running. Returns true.
- Closes thefile.
- Method: stop_tcpdump() — terminates tcpdump process.
- Input: none.
- Output: none.
- Process:
- While loop — until Boolean terminate flag
IS Set.
- The following process is enclosed
in a try-catch block.
- Creates an array of strings to hold
the sequence of commands and tags
required to perform a run time

execution (see above section 2.1 for

150

more detail) of ps -ax | grep
tcpdump | grep -v grep | grep -v
/bin/sh. This command performs a
ps list (active processes) that contain
the tcpdump title.
- Note that waitFor() is required
since it is necessary for the parent
process to wait for its completion.
- Creates a data stream pointer to the
above created process stream.
- Retrieves the process id of the
running tcpdump process.
- Creates an array of strings to hold
the sequence of commands and tags
required to perform a run time
execution (see above section 2.1 for
more detail) of kill + <tcpdump
process>. This command kills the
tcpdump process.
- Note: during testing it was
discovered that when executing the
tcpdump script two tcpdump
processes are created. Therefore this
routine loops until al tcpdump
process are killed.
- When no more tcpdump processes
are found, set Boolean flag to exit
while loop.

- Method: tear _down_connections() — tears down existing

security association (SA) connections between peers.

- Input: none.

151

- QOutput: none.
- Process:
- Cdculates existing connections (security
association) by calling calc_connection().
- Retrieves the current connection index
counter by calling
read_connection_index_file().
- The following process is enclosed in a try-
catch block.
- An assumption is made here that every SA
consist of pair of two connections.
- Divide number of current connections by
two.
- If the number of current connection equals
zero, no security association currently exist.
Exits method.
- Otherwise, proceeds.
- For-loop for the number of connections
(divided by two).
- Writes the connection number
index to a file to terminate that
connection by caling
write to_fifo();
- Checks to see if in the last iteration
of the loop. If so, exit loop by using
break.
- Otherwise, increases connection
index counter by one.
- For information on connection
counter index refer to section A.5in

this chapter.

152

- Creates a file pointer and file input stream
to /var/run/isakmpd.pid
- Reads in the process id for Psec from
isskmpd.pid.
- Closesthefile.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section B 2.1 for more detail) of kill -HUP
<process id>. The -HUB switch causes a
“hang-up” action to be performed on the
connection and instructs it to reread the
configuration files.
- Note that waitFor() is required since it is
necessary for the parent process to wait for
its completion.
- The current index counter is then written to
the connection_number file by calling
write_connection_index_file().
- Method: write to fifo(}- uses the current connection
index to write teardown instructions to the IPsec
mechanism in /var/run/isakmpd.fifo file.
- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates a file pointer, file output stream,
and print stream to /var/run/isakmpd.fifo.
- Writes the current connection index

counter and the tear down instruction by

153

writing t Connection-+ <connection
number index >.
- Connection number is stored in a global
variable.
- Closesthefile.
- Method: synchronized copy_kern_ipsec() — copies the
file /kern/ipsec (file containing the current security
associations) to /root/demo/tempipsec (file used to parse
security associations). This method is synchronized to
avoid a deadlock when various threads, created by the
demo, compete for this function.
- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates an array of strings to hold the
sequence of commands and tags required to
perform a run time execution (see above
section B 2.1 in this chapter for more detail)
of cp /kern/ipsec /r oot/demo/tempipsec.
- Note that waitFor() is required since it is
necessary for the parent process to wait for
its compl etion.
- Method: calc_connection()— calculates the number of
existing security associations (SA) by reading
/root/demo/tempipsec and parsing the information to
count existing SAs.
- Input: none.
- Output: none.

- Process:

154

- The following process is enclosed in a try-
catch block.

- Creates a file pointer and file input stream
to /r oot/demo/tempipsec

- Performs a “thread sleep” operation for
one second to allow time for other processes
to use the /r oot/demo/tempipsec.

- Reads in the contents of the file into a
StringTokenizer buffer.

- Closesthefile.

- While loop until al tokens have been

parsed.
- Advances to next token.
- Compares token with “SPI”. If
match found, increment

connection_counter (a global
variable).
3.3 dp_consolejava
This class generates the dynamic parameter selection interface with radio
buttons for network mode and security level selection. The user must select a network
mode and security level and press the submit button. The interface also has an exit
button to close the window.
3.3.1 Design Approach
The dynamic parameter console provides the user with a selection
mechanism for network mode and security level. Error checking is provided to ensure
that the user selects one of each. To activate the selection, the user must press the submit
button. Action handlers are provided to initiate the change in mode and level.
3.3.2. Processing Description
The following is the processing description used to design and
develop dp_consolejava:

- The dp_console is initidized as a JFrame with radio

155

buttons for network mode and security level selections.
- The user must select a network mode and a security level
before pressing the submit button. If not, an error message
is displayed.
- Once a valid selection has been made, the submit button
generates a signal to the IPsec mechanism to reconfigure in
accordance to the new network mode and security level.
3.3.3 Pseudo Code
The following is a description of the dp_console class pseudo
code:
- Class: dp_console extends JFrame
- Most variables used throughout this class are Global .
- Method: dp_console() constructor — initializes the
dynamic parameter selection interface.
- Process:
- Initializes interface JFrame.
- Adds a window adapter to handle window
exiting by calling dispose().
- Creates titles for network mode and
security level.
- Creates radio buttons with action handlers
for network modes and security levels.
- Creates Submit button with an action
handler.
- Creates an Exit button with an action
handler to close the window by calling
dispose().
- Initializes globa network mode and
security level variables.
- Instantiates an instance of

demo_support_functions.

156

- Gets the current Runtime instance by
caling getRuntime().
- Method: start_dp_console() — makes the dp_console
visible.
- Input: none.
- Output: none.
- Process:
- Setsthe JFrame to visible.
- Method: reset_error_panel() — clears error message
panel.
- Input: none.
- Qutput: none.
- Process:
- Erases any existing text in the error
message panel.
- Method: set_dynamic_parameter () — stores the value of
the dynamic parametersin afile.
- Input: none.
- Output: none.
- Process:
- Ensures that that old file is deleted by
caling delete file().
- Writes the current value of the dynamic
parameters in a file by caling
write_dynamic_parameters file().
- Method: write_dynamic_parameters file — writes the
global current value of the dynamic parameters to
usr/src/sbin/isakmpd/dynamic_parameters.
- Input: none.
- Output: none.

- Process:

157

- The following process is enclosed in a try-
catch block.
- Creates a file pointer, file output stream,
and print stream to
lusr/src/sbin/fisakmpd/dynamic_paramete
rs.
- Writes the current value of the network
mode and security level stored in global
variables to thefile.
- Closesthefile.
- Method: print_dynamic_parameters file() — displays
the current value of network mode and security level to the
system console for trouble shooting purposes.
- Input: none.
- Output: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates a file pointer, and file input stream
to
lusr/src/sbin/isakmpd/dynamic_paramete
rs.
- Reads in the current value of the network
mode and security level and displays the
values via the system console.
- Closesthefile.
- Method: read_dynamic_parameters file() — reads in
the value of network mode and security level from file:
/usr/src/shin/isakmpd/dynamic_parameters and stores
them in the class global variables respectively.
- Input: none.

158

- QOutput: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates afile pointer, and file input stream
to
lusr/src/sbin/fisakmpd/dynamic_paramete
rs.
- Reads in the current value of the network
mode and security level and stores them in
their global variables respectively.
- Closesthefile.
- Method: delete file() — deletes existing dynamic
parameter file.
- Input: none.
- QOutput: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creastes a file pointer to
lusr/src/sbin/isakmpd/dynamic_paramete
rs.
- Thefileis deleted.
- Class. SLRadioButtonHandler implements ItemListener —
security level radio button action handler
- Method: itemStateChanged(ltemEvent €)
- Process:
- Stores the selected value in the global
security level variable.
- Class: NMRadioButtonHandler implements ItemListener —

network mode radio button action handler

159

- Method: itemStateChanged(ItemEvent €)
- Process:
- Stores the selected value in the globa
network mode variable.
- Class: SubmitButtonHandler implements ActionListener —
submit button action handler.
- Method: actionPerformed(ActionEvent €)
- Process:
- Veifies that a network mode and security
level have been chosen.
- If not, displays an error message and exit
handler.
- Otherwise continues.
- Saves the selected values to the dynamic
parameter file by caling
set_dynamic_parameter ().
- Veifies if IPsec mechanism is aready
running by caling
demo_support_functions.daemon_runnin
90-
- If so, performs the following:
- Copies the SAD vaues to a temp
file for processng (used for
connection calculations) by calling
demo_support_functions.copy_ker
n_ipsec().
- Tears down existing connections to
reconfigure the IPsec mechanism
with the new network mode and
security level by calling

demo_support_functions.tear_dow

160

n_connection().
- Flushes existing security
association values from the IPsec
mechanism by caling
demo_support_functions.flush_ips
ec().
- Loads the SPD for the
reconfiguration phase by calling
demo_support_functions.load_spd
0;
- Otherwise, displays a message informing
the user that the 1Psec mechanism must be
started first before the dynamic parameter
can take effect.
- Class. ExitButtonHandler implements ActionListener — Exit
button action handler.
- Method: actionPerfor med(ActionEvent €)
- Process:
- Terminate the JFrame by calling dispose().
34 ipsecinfo.java
The ipsecinfo class provides a display mechanism for the Security
Association Database (SAD). The display needs to be updated constantly to reflect
changes caused by the dynamic parameterization of the IPsec mechanism (i.e. shift in
network mode and/or security level).
3.4.1. Design Approach
The ipsecinfo class will provide the user with a constantly updated
display of existing security associations in the SAD. The mechanism once started must
continue until terminated. To ensure that the user can easily read the output, the display
should adjust in size in accordance with the number of SA’s with the Security
Association Database (SAD).

3.4.2. Processing Description

161

The following is the processing description used to design and
develop the ipsecinfo class:

- Once initiated, the process runs independently
(thread) until terminated.
- Reads in data from /kern/ipsec and parses it
accordingly.
- To reduce wasted CPU processing time, thefileis
only read and parsed if it has been updated since the
last parsing operation, and is in its complete form.
To accomplish this, the class can utilize file date-
time-stamps and comparison algorithms with
previoudy displayed SA’s. During the development
phase, it was discovered that the 1Psec mechanism
writes to /kern/ipsec incrementaly. Therefore it is
important to make sure the whole file is present
prior to parsing. An agorithm is required that will
check the file for all mandatory fields prior to
parsing.
- Also, atemporary file needs to be copied to avoid
permission issues when the IPsec mechanism wants
to write to thefile.
- When the file is updated, the process of reading
the file and parsing begins.
- To parse thefile, the following tags are used:

- SPI

- Destination

- Source

- xform

- encryption

- authentication

- As the parsing occurs, text is added to the display

162

dynamically.
- At the completion of the parsing, the number of
SA’sis used to determine the size of the JFrame.
- The JFrame will terminate once the exit button is
pressed.
3.4.3. Pseudo Code
The following is a description of the pseudo code for
ipsecinfo.java:
- Class: ipsecinfo extends Thread
- Most variables used throughout this class are Global .
- Method: ipsecinfo() — class constructor.
- Process:
- Initializes a JFrame.
- Initializes all display mechanisms.
- Gets the current Runtime instance by
calling getRuntime().
- Instantiates an instance of
demo_support_functions
- Adds a window adapter to handle window
exiting by calling dispose().
- Method: frame _initialization() — initializes the JFrame to
repaint new SAs.
- Input: none.
- Output: none.
- Process:
- Removes existing components from the
JFrame.
- Reinitializes all components.
- Method: prelimanary_test(StringTokenizer st) —
compares the current SA’s in the JFrame with the SA’s

from the new file. This is performed to avoid unnecessary

163

painting and maintain good display resolution.
- StringTokenizer st — contents of the file to
be verified.
- Output:
- Boolean — True if string contains new
SA’s. False otherwise.
- Process:
- The following process is enclosed in a try-
catch block.
- While loop through all string tokens.
- Compares SPI's of existing SA’s
with new SA’s.
- If anew SA isfound, returns true.
- Otherwise, keep checking al SA’s
- Default return is false.
- Method: String wait_for_full_copy(String record)—
verifies that all the required tags exist in the string prior to
parsing. If not, file is reread and the string is verified until

all the tags are found.

- String record — contents of the file to be
verified.

- Output:
- String — String that contains all required
fields.

- Process:

- The following process is enclosed in a try-
catch block.
- While loop through all string tokens.

- Tests to see if the following tokens

164

exist in the string:
- SPl
- Destination
- Source
- xform
- If dl tokens are found, the current string is
returned.
- Otherwise, the file is reread and the new
string is verified. This process continues
until all required fields are found.
- Method: parse(String record) — parses the string into
SA’sto be displayed on the JFrame.
- String record — contains the file to be
parsed.
- QOutput: none.
- Process:
- The following process is enclosed in a
try-catch block.
- Verifies that the new string contains new
SA’s to paint by calling
prelimanary_test().
- If new strings are found, continues parsing.
- Otherwise, exits the method.
- Veifies that al fields are present in the
string. If not, waits until all fields are
present. This is performed by caling
wait_for_full_copy().
- If all fields are present, continues parsing.
- Uses the StringTokenizer to efficiently
breakup the string for parsing.

165

- While loop through the string tokens.
- Parses the string based on the
following fields:
- SPI — indicates new SA.
Skip a line in JFrame.
Increment SA counter.
- Destination — wused to
retrieve the destination IP
address.
- Source — used to retrieve the
source | P address.
- xform — used to determine
the method of protection (AH
or ESP)
- Encryption — wused to
determine the encryption
algorithm.
- Authentication — used to
determine the authentication
algorithm.
- Sizes the JFrame according to the number
of SA’s (SA counter).
- Method: run()
- Input: none.
- QOutput: none.
- Process:
- The following process is enclosed in a try-
catch block.
- Creates a file pointer to
/r oot/demo/tempipsec.

- While loop continuously until thread is

166

terminated.
- Compares old file date time stamp
with new date time stamp.
- If they do not match, reads in the
file.
- Creates a file input stream to
/r oot/demo/tempipsec.
- Readsin the file into a string.
- Closesthefile.
- Initiates the parsing routine by
caling pars().

3.5 tcpdump.java
A vauable tool in demonstrating the IPsec mechanism is tcpdump

(described earlier in section B.8). It enables the user to view the actual packets being sent
and received across the network. Specifically, it facilitates the demonstration of packets
sent in the clear, encrypted and/or authenticated. This tool is typically used via the
command prompt. The challenge was to filter the tool’ s terminal console output through a
Java JFrame to maintain a consistent graphical user interface approach. Again the goa is
to limit the user’s required knowledge of the operating system and environment to utilize
the security mechanism.

3.5.1 Design Approach

The god of this class is to provide the user with graphical console
display of tcpdump. By selecting the Display TCPDUM P option from the main menu,
the tcpdump function starts and displays captured packet information in the generated
Java JFrame. When the user closes the window, the tcpdump function terminates.

3.5.2. Processing Description
The following is the processing description for the tcpdump.java:

- Once ingtantiated, the tcpdump class launches, creating a
JFrame Java console window.
- The JFrame should contain:
- Consoletitle.
- Scrollable view pane (since a large amount of data
167

generated by tcpdump).
- Exit button to close the JFrame and terminate
tcpdump.

3.5.3. Pseudo Code
The following is the psewdo code for tcpdump.java:

- Class: tcpdump extends Thread.
- Variables used throughout the class, are declared as
Global.
- Method: tcpdump() — constructor for the class.
- Process:
- Instantiates demo_support_functions
class.
- Gets the current Runtime instance by
calling getRuntime().
Initializes JFrame with title.

Initializes scrollable text frame.

Initializes exit button panel.
Adds exit button action listener.

- Terminates tcpdump by calling
demo_support_functions.stop_tcpdump().
- Closesthe JFrame by calling dispose().
- Adds awindow listener that closes JFrame
by calling dispose().
- Method: start_tcpdump() - executes tcpdump and
creates a pipe to capture packet information.
- Input: none.
- Output: none.
- Process:
- The following code is enclosed in a try
catch block.
- Creates an array of strings to hold the

168

sequence of commands and tags required to
perform a run time execution (see above
section B 2.1 in this chapter for more detail)
of tcpdump -N 131.120.8.95 and
131.120.8.9.
- Notel: that wait() is required since it is not
necessary for the parent process to wait for
its completion. If it did not wait, further
processing in the class would be performed
until the tcpdump process was terminated.
- Note2: With tcpdump, all tags and values
have to be added to the string array
separately in order to execute properly
(unlike other commands where switches and
tag values can be included in the string array
as one string).
- Create an input stream to the tcpdump
process.
- Method: repaint_frame() — this method generates the
output from the piped stream and displays to the scrollable
text area.
- Input: none.
- OQutput: none.
- Process.
- The following code is embedded in a try-
catch block.
- Initializes the buffer reader to buffer the
piped information from tcpdump.
- While loop until JFrame is closed (while
(true)).
- Reads data from the buffered

169

reader pipe.
- Appends data to the scrollable
pane.
- Pauses to alow for printed
changes to be viewed on the screen.
- Method: run() — run method for the thread.
- Process:

- Sets JFrameto visible.

- Executes tcpdump by caling

start_tcpdump().

- Activates the display of tcpdump by

calling repaint_frame().

36. SPD.ava
The purpose of this class is to provide a display for the security policy

database (SPD). Since the database has a specific format, title tags are used to display the
information.

3.6.1. Design Approach
The goal of this class is to retrieve the data stored in the security

policy database (SPD) and display on screen in an easy to read format. A static
implementation is used.
3.6.2. Processing Description
The following is the processing description used to design and
develop SPD.java:
- Initializes a JFrame with a view pane to display the SPD
information and an exit button to terminate the window.
- Executes the command to generate an output of the SPD
(netstat -rn -f encap).
- Creates a pipe to the process to retrieve the data.
- Displays the data on the screen in an organized easy to
read manner.
3.6.3 Pseudo Code
The following is a description of the pseudo code used in
170

SPD.java:
- Class: SPD
- Variables used throughout the class, are declared as
Global.
- Method: SPD() class constructor.
- Instantiates demo_support_functions class.
- Ges the current Runtime instance by caling
getRuntime().
- Initializes JFrame with atitle.
- Initializes the view pandl.
- Initialize the JPanels, JLabels and Text areas to be
used in displaying SPD data.
- Initializes the exit button panel.
- Adds exit button action listener to close the
JFrame by calling dispose().
- Adds a window listener to close JFRame by
calling dispose().
- Retrieves data and display information in the
JFrame by calling setTextFields().
- Method: String create SPD_input() — this method
retrieves the SPD data, stores it in a string and returns it to
the calling function.
- Input: none.
- Outpult:
- String — contains the retrieved SPD data.
- Process:
- The following code is enclosed in a try
catch block.
- Creates an array of strings to hold the
sequence of commands and tags required to

perform a run time execution (see above

171

section B 2.1 in this chapter for more detail)
of netstat -rn -f encap
- Note: that waitFor() is required since it is
necessary for the parent process to wait br
its completion.
- Creates an input stream to the netstat
process.
- Retrieves the SPD data from the input
stream by calling inputStream.read().
- Casts the information as a string and
returns to calling method.
- Method: setTextFields() — this method parses the input
string and displays the SPD data in the JFrame.
- Input: none.
- Output: none.
- Process:
- Casts the string as a String Tokenizer to
parse data using blank space as the token
delimiter.
- Skips the header titles.
- While loop through all string tokens.
- Parses the expected data
appropriately into a display field.
- Adjusts JFrame size according to
number of rowsin the SPD.
3.7 SPFK.ava
The purpose of the SPFK .java class is to provide the user with a
more readable display of the KeyNote file. From previous discussions and examples
provided in this thesis, it should be clear that KeyNote can become quite complex and
difficult to read. SPFK .java attempts to provide the user with an easier representation of

the defined security policy.

172

3.7.1. Design Approach

The goa of this class is to trandate KeyNote's complex

assertion format into an easy to understand syntax and display it in a JFrame. By using
the DNF parser (NPS-CS-02-002, January 2002), the class can take advantage of the
translated DNF form to perform a parsing routine. The display should be equipped with a

scroll bar for long policies (quite typical when dealing with numerous security attributes

and dynamic parameters). It should also have an exit button to close down the JFrame.

and develop SPDK .java:

description for SPDK .java:

3.7.2. Processing Description

The following is the processing description used to design

- Once instantiated, a Java JFrame console window is
created.
- The JFrame contains:
- Consoletitle.
- Scrollable view pane (since a large amount of policy
datawill typically be displayed).
- Exit button to close the JFrame and terminate SPDK.
3.7.3. Pseudo Code

The following is a description of the pseudo code

- Class: SPFK ()

- Variables used throughout the class, are declared as
Global.
- Method: SPFK () — this method initializes the JFrame and
reads in the security policy data from afile.
- Input: none.
- QOutput: none.
- Process:
- Initializes the JFrame with atitle.
- Initializes the scrollable text area.

- Initializes the exit button and add an action

173

handler that will terminate the JFrame by

caling dispos().
- Retrieves the security policy from DNF

converted KeyNote file
(/etc/isakmpd/K eynoteDNFFinal.policy)
by calling

demo_support_functions.read _file() and
storing datain a string.
- The following code is embedded within a
try-catch block.
- Casts the string into a string tokenizer
using ‘[asthe delimiter.
- While loop through all string tokens.
- Parses through the code retrieving
security proposals as tokens.
- Further parses and appends
KeyNote security attribute to the
scrollable text area by calling
showPolicy().
- Method: showPalicy(String policy) — takes input string
(security proposal), parses it into security attributes and
dynamic parameters, and appends to the scrollable text
area.
- String — security proposal to be parsed.
- Output: none.
- Process:
- Casts input string as string tokenizer.
- While loop through all string tokens.
- Parses through the string, checking
for expected tags and retrieving tag

174

values.
- Displays tags and tag values on the
scrollable text area by calling
addText().
- Method: addText((String, String) — takes input strings
and appends them to the scrollable text area.
- String — tag.
- String — tag value.
- Qutput: none.
- Process:
- If tag value is not null, appends tag and tag
value to the screen.
D. CONCLUSION
This chapter reviewed the process used to design and develop a graphical user
interface demonstration © support the research performed in this thesis. Prior to this
demo, all commands and processes were managed from the command prompt. This
proved to very cumbersome and difficult to understand for most users. By researching the
mechanics involved in the “command-lineg’ commands required to operate the IPsec
mechanism, | was able to capture the functiondity in a GUI. The GUI demo is easy to
use and understand, and ultimately provides an efficient method to perform a

demonstration on the completed research from this thesis.

The following chapter is a future work discussion, outlining all the potential areas

for future research.

175

THISPAGE INTENTIONALLY LEFT BLANK

176

VIl. RESEARCH SUMMARY AND FUTURE WORK

A. INTRODUCTION

The research presented in this thesis, provides a proof of concept for
parameterizing the 1Psec mechanism, specifically OpenBSD 2.8 IPsec. The focus of this
work and development was on alimited number of security parameters and a peer-to-peer
network configuration. Although the design was generalized to handle all security
parameters and network configurations, further implementation will be required to
broaden the functionality of 1Psec parameterization. Additionally, there are other features
that require research, development and implementation to harness OpenBSD’s 1PseC’s
capabilities.

In this chapter, the research performed in this thesis will be summarized and the
future areas of research in OpenBSD IPsec will be dicussed.
B. SUMMARY OF RESEARCH PERFORMED INTHISTHESIS

The goa of this thesis was to provide dynamic parameterization to security
mechanisms, specifically OpenBSD 2.8 IPsec. To perform this, | studied the concepts of
Quality of Security Service (QoSS), Dynamic Parameters (Network Mode and Security
Level), and IPsec architecture. | then designed a dynamic parameterization
implementation specific to OpenBSD IPsec version 2.8. To further illustrate this
mechanism, | designed and implemented a graphical user interface that enabled the user
to view and understand the dynamism of the modified IPsec mechanism. Below is a brief

summary of al the above-mentioned areas.

Quality of Security Service (QoSS) provides a mechanism to access security
services in accordance with the user and system requirements, as constrained by the
network environment. Security services can be defined in terms of user and system
requirements, network environment factors and available resources. Without a range of
security options, a user is faced with the rigid and limited choice of “al or nothing”:
security or no security. Historically, security services have been static. Quality of
Security Service (QoSS) provides a more flexible approach to security services. Users

can define requirements with finer granularity through QoSS. The security resource

177

manager and/or the Security System can adjust security service accordingly to meet user
requirements, system policy and network environment. The utilization of security
services comes with a cost to the user, application, system and resources. Whether in the
form bandwidth, algorithm processing time, overhead, or funds, the cost of security is a
challenging concern to resource managers. A costing framework is required to map
system resource impact to enable a management system to effectively handle security

service requests.

Security services include nonrepudiation, auditing, authentication, encryption, or
intrusion detection. Each service will require a governing policy, consisting of specific
rules of how and when to use the service. Therefore each network task associated with
QoSS can be mapped to a vector of security requirements directly associated with the

security services the task requires.

Static security parameters limit a security system’s ability to adapt to changes. By
introducing a dynamic mechanism, a system can modulate its security settings in
accordance with changing conditions. To illustrate the ability to adapt dynamic
parameters to a QoSS framework we utilize the Network Mode and Security Level
abstractions.

Network Mode enables a network security policy to be classified according to
environmental variables. Some example modes might be normal, impacted, and crisis.
Normal mode could be defined as ordinary operating conditions with normal traffic load
and no heightened threat conditions. Impacted mode may be defined when the
network/system is experiencing high levels of traffic and therefore certain security
selection may not be available due to efficiency constraints. Crisis mode may be defined
as a situation thet requires the highest level of security or the lowest level dependent on

the situation and policy.

Security Levels are used to provide further granularity to Network Security
Policies. By developing a security definition that encompasses general security settings
required by users or applications, the complexity of security settings can be simplified to
present to users selections such as High, Medium and Low. High would require the

strongest security settings. Medium would require moderate security settings. Low would

178

require weak to no security settings. A mapping of security settings to security levels
providing a range of selection or specific values will be required to properly enforce the
system security policy.

As a proof of concept to demonstrate how a specific security mechanism can be
modulated to provide different levels of security in accordance with QoSS, the OpenBSD
IPSec security mechanism was used. OpenBSD |Psec utilizes the KeyNote Trust
Management component, which enables a security policy to be mapped to appropriate
security attributes. When a initiator, peer A, wants to establish secure communication
with aresponder, peer B, the peer A’s IPsec mechanism proposes a set security proposals
to peer B. Peer B’s |Psec mechanism verifies the proposal by performing a query against
their security policy in KeyNote. If a suitable security proposal is found, the
communication handshake is completed, and the peers establish secure communication

channels defined by security associations (SA).

This process is static because when the network mode or security level change
and an adjustment in security policy is required, then the IPsec mechanism must be halted
and manual adjustments are required. This is not practical or efficient. An automated
technique is required to modulate |PSec's variant security attributes according to network
mode and security level selections, enabling the security mechanism to dynamicaly

adjust security parameters and settings in accordance with policy.

The current process also maintains security policy definitions in numerous aress,
resulting in management challenges. During (re)configuration phase in IPsec, two
separate files are read to load the security proposal set. Thus, another goal of this thesis
was to streamline the security policy loading process by maintaining the security policy
in only one arealfile (KeyNote).

1. Research Conclusions

To accomplish the goals stated above, the following modifications to the existing
|Psec implementation were required. The first modification was to provide granularity to
KeyNote, and parameterize and improve isakmpd.conf / isakmpd.policy (KeyNote)
security proposal range loading process. Providing granularity to KeyNote required an in-

depth review of the KeyNote structure including the Boolean query mechanism. The

179

research proved to be successful in logicaly inserting the dynamic parameter values
according to policy definition, therefore, providing finer granularity to Boolean query
mechanism. Other modifications included the changes to the configuration process to
enable security proposal ranges to be retrieved from KeyNote. All modifications were
successful in providing the IPsec mechanism with the ability to adjust security attributes

according to dynamic parameters and security policy.

OpenBSD 1Psec currently requires a complex sequence of commands via
command- line commands to establish secure connection between peers. The process of
establishing an IPsec connection with a peer requires considerable knowledge of the
operating environment. The command-line procedure aso provides challenges in
demonstrating the effectiveness of the parameterization of 1Psec mechanism. As a result,
auser-friendly graphical oriented interface was design and developed to alow users, with
limited knowledge of OpenBSD operating environment, to observe the security
mechanism and its dynamic parameterization.

C. FUTURE DESIGN AND IMPLEMENTATION ON
PARAMETERIZATION

To further develop the functionality of the parameterization of the

OpenBSD 1Psec mechanism, additional design and implementation is required. Listed
below are the mgjor items that will require future attention.

1 Ability to Handle all Possible Security Parameter Combinations

The research performed was limited in the range of possible security parameters.
The goal instead was to achieve a proof of concept to pave the path for a fully functional
parameterization of IPsec. To achieve full functionality, research will be required to
ensure all possible combinations of security attributes are taken into consideration in the
actual implementation. Examples of further implementation involve incorporating all
possible encryption and authentication algorithms, algorithm key length, and time-of-day
parameters. Additional development will be required to incorporate inequality definitions
(<, >, =) inthe security policy management mechanism. For example, esp_enc ag >
DES which would imply 3DES and AES.

2. Improving Dynamic Parameter Loading by Utilizing “Policy-
Callback” Embedded Functionality

The origina implementation of OpenBSD IPsec utilizes a “policy_callback”
180

routine to load security proposals into a structure for KeyNote query operation. The
procedure is very efficient because all parameters are loaded into the KeyNote query
structure at once. During the implementation portion of this thesis, all attempts to utilize
the existing “ policy-callback” mechanism to load dynamic parameters were unsuccessful.
The work-around was to load one dynamic parameter at atime.

3. Eliminate the Need for isakmpd.conf Entirely

This thesis involved removing isakmpd.conf security parameters specific to the
ISAKMP Phase 1l quick mode. However, main/aggressive mode information and
additional peer information (IP addresses, Net Mask, Gateway Address) still remain
resident in isakmpd.conf. The challenge is that the current configuration of KeyNote
does not support nortsecurity specific parameters. Further research and development is
required to evaluate the elimination of isakmd.conf.

4, Develop a Parsing Mechanism to Retrieve the Initial Security Policy
Database Entries

A parsing routine similar to one developed in this research is required to load the
appropriate security rules into the Security Policy Database (SPD). The challenge will be
to provide an intelligent parsing routine that can read a security policy file
(KeyNotefisakmpd.policy) and generate rules for the SPD. Currently, security policy
relevant rules are loaded independent of the parameterization mechanism by a script that
loads predefined policy rules into the SPD (see Chapter V1).

D. HARNESSING OPENBSD’SIPSEC MECHANISM CAPABILITIES

OpenBSD’ s IPsec mechanism provides a wide range of flexible options involving
network security. This research was limited due to the objectives and the required focus
areas. Additional research is required to explore the other possible configurations and
application of the OpenBSD | Psec.

1 Behavior with all Possible Combinations of QoSS and non-QoSS
Peers

The research performed in this thesis was limited to a model involving a Quality
Of Security Service (QoSS) aware initiator and a nonQoSS aware respondent. To
account for the mechanism’s full capability and functionality, other combinations need to
be researched and tested. Specifically, non-QoSS aware initiator and a QoSS responder,

and both initiator and responder are QoSS aware.

181

2. Per-User / Per-Application Relationship Capability

The testing and implementation performed within this research involved two
specific applications. Telnet and Finger from a root access. In reality, an implemented
IPsec mechanism would be required to support a broader range of applications and
authorization levels of users. Some typical applications might include email, video-
conferencing, Internet Remote Chat (IRC), and Web Portals. Further design, development
and testing needs to be performed, to support these other applications with the IPsec
mechanism.

3. Explore Proposal Caching I ssues

Further research and testing is required to determine the security mechanism’'s
QoSS behavior concerning the change of nonQoSS parameters. An example is the
expiration of a valid Security Association (SA) without a change to Network
Mode/Security Level. Will the SA expiration trigger a reconfiguration? Other examples
include testing behavior resulting from the non-QoSS initiators, QoSS aware initiators
and responders (both capable of initiated changes to QoSS and nonQoSS parameters),
and more frequent negotiations (resulting from shorter lifetimes).

4, Security Policy Editor

The current syntax and the potential complexity of QoSS and security parameter
combinations in KeyNote pose a challenge in usability for the human user interface
component used by security policy managers and implementers. A security policy editor
that trangdlates the KeyNote syntax into an “easy-to-read” format is required. This editor
would enable an authorized user, to view and edit a security policy using a graphical user
interface.

5. Additional Network Configurations

IPsec is designed to be able to handle numerous network configurations
(discussed in the IPsec Architecture Chapter 111 section B.2.3). The research and
development performed and discussed in this thesis is based on the peer-to-peer
configuration. Therefore, further design, implementation, and testing will be required to
ensure proper functionality of 1Psec mechanism and the parameterization functionality of
security parameters. Specifically additional research is required for Gateway-to-Gateway,
Gateway to | Psec-enabled hosts, and hosts behind |Psec gateways.

182

6. IPV6 Addresses

In order to account for IPV6 addresses, further research, development and testing
will be required.

7. Distribution of KeyNote Policies

The ability to securely distribute keying information to peers in a Public Key
Infrastructure(PK1) environment is a crucia and challenging element of a secure network
environment. Likewise, the ability to securely distribute KeyNote policy to participating
peers or gateways is crucia to IPsec architecture. Research is required to explore
potential mechanisms to enable this functionality.

8. KeyNote Protection

Ensuring that only authorized users have access to and the ability to modify
KeyNote, is essentia to the security policy mechanism of 1Psec. An identification and
authentication mechanism is required to ensure only authorized users have access to
sensitive IPsec files and applications. A range of access may also be desired. For
example, a user may have read-only permission to the security policy file, while the
security manager will have read-write permissions.

0. Secure Dissemination & Storage of QoSS Parameters Values

To effectively employ QoSS parameters, a method of secure storage and
dissemination across a network is required. Vulnerabilities and threats posed by Denia of
Service (DoS) attacks, and packet capturing and modification need to be examined.

10. | Psec Costing | ssues

As with any security system, methods for calculating system resource costs
related to IPsec choices and connections are required. To fully implement the QoSS
model, system managers need measurement tools to be able to gauge resource costs per
security requirement to properly govern the IPsec mechanism.

11. Graphical User Interface

The current implementation of OpenBSD IPsec is command-line driven. To
provide for easier human computer interaction , a graphical user interface (GUI) that is

embedded into the mechanism would be helpful.

183

E. CONCLUSION
In this chapter, | summarized the research performed on the paramertization of
IPsec in this thesis and discussed future areas on research in OpenBSD |Psec.

184

APPENDIX A. CONF.C

The following is code added to /usr/src/shin/isakmpd/conf.c:

/**

*

Structure: suite_struct

This structure is used to stored security proposa
i nformati on.

*
*
*
*

*

R Rk S S IR R R O O R S R R O R S

struct suite_struct {

char * suite_nane;
char * suite_protocol
char * suite_transform
char * protocol _id;
char * transform.d;
char * encapsul ati on_node;
char * group_description
char * authentication_algorithm
char * life;
char * life_type
char * |ife_duration;
char * esp;
char * ah;
char * esp_enc_al g;
char * esp_auth_alg;
char * ah_auth_al g;
char * pfs;
char * key_l ength;
int copy_flag;
b
/**
*
* Structure: dynani c_packet
*
* This structure is used to stored dynam c paraneter
* data, including dynanic paraneter nanme, assignnment synbol
* and val ue.
*
EE R I R I O b S S I I R R I I I S S R I I I L S I

struct dynam c_packet {

char* title;
char* synbol ;
char* val ue

b

185

/1 The followi ng are function prototypes added to conf.c to inplenent
/1 dynam c paraneterization

voi d conf_kn_parse(int);

i nt add_para_val ues(char**, struct suite_struct *,struct suite_struct*,
int);

char * convert_to_uppercase(char*);

voi d parse_sel ection_paraneter(char*,int*, char*,char*,char*,int~*,
int,int *);

voi d parse_i psec_paraneter(char*,int*, char*, char**,int*);

i nt DNF_parse(char **, char*, int*, int, struct suite_struct *, struct
dynam c_packet *, int,struct suite_struct*, int);

voi d parse_i psec_para_tag(char*,int*, char*,char**,int,int*);

void life_seconds_transl ation(char**, char**, char**);

void life_kilobytes translation(char**,char**, char**);

voi d group_description_translation(char**);

int test_suite_structure(struct suite_struct *, int);

void send_to_conf_set(int,char*,char*,struct suite_struct *,int, struct
suite_struct *);

voi d | oad_default_sa();

void test_print_suite_list(struct suite_struct *, int);

void test_conf_get _str();

int duplicate_sa (struct suite_struct *, int,struct suite_struct *);
voi d test_print_dynam c_packet (struct dynam c_packet *, int);

void test_print_suite_struct(struct suite_struct *);

i nt dynam c_package_verification(char *, int *, int, struct

dynam c_packet *, int,int);

struct suite_struct * struct_initialization(struct suite_struct *);
struct suite_struct * initialize_default_suite_profile(struct
suite_struct *);

struct dynam c_packet* package_dynam c_paranmeters(int *);

int verify paraneter(char *, int *, char *, char *,int);

voi d advance_to_end_DNF(char*,int *,int);

/**

*

* Function: package_dynam c_parameters()This function reads a file that
* contains the current inputs of dynanic paranmeters such as

* Net work Mode and Security Level. Initializes an array of

* structures that will dynamically grow as required. Loads the
* file input into the array of struct.

*

* - Input:

* - int * package_counter - used to deternine the size of the
* struct array

*

*

* - Qut put:

* - struct dynami c_packet * - pointer to an array of

* dynam c_packet structure

*

*

*

***/

struct dynam c_packet * package_dynam c_paraneters(int
186

*package_counter) {

int array_size = 10 ; // chosen as average case for struct size
struct dynam c_packet * package; // pointer to array of struct

/1l strings used to read fromfile
char * title (char*)mal | oc(20);
char * synbol = (char*)mall oc(20);
char * val ue (char*)mal | oc(20);

/1 used for file IO

FILE * pifp;

int file_status=0;

(*package_counter) = 0; // initialize the array size to zero

[l initialize the pointer to an array size of array_size

package = (struct dynam c_packet *)mall oc(sizeof (struct
dynani c_packet) *array_si ze);

/1 open file to read in dynam c paraneters
/'l check for errors in openning the file

if ((pifp = fopen("/usr/src/sbin/isaknpd/ dynam c_paraneters",
"r"))== NULL) {
/1 error openning the file

LOG DBG ((LOG_POLICY, 40, "ERROR OPENNI NG FILE %", errno)):

}

else { [// file was successfully openned
/1 do-while loop to read in data until EOF reached
do {

/'l read in fromthe file expecting the follow ng syntax:
/1 title synbol value

file_status = fscanf(pifp, "%%%", title, synbol, value);

LOG DBG ((LOG POLICY, 40, "Just read fromfile....",""));

LOG DBG ((LOG POLICY, 40, "Title: % Synbol: % Value: %",
title, synmbol, value));

/'l check for reading errors..

if (file_status == 0) {

/1 reading error occurred

LOG DBG ((LOG_POLI CY, 40, "error reading fromthe
file....",""));

}
187

/1l check for EOF...
else if (file_status == EOF) {

// ECF reached

LOG DBG ((LOG POLICY, 40, "end of file....",""));
}
/1 otherwi se... read operation successfu
el se {

/1l create new struct space for dynanic paraneters and
/1 assign values fromfile to struct

package[(*package_counter)].title = strdup(title);
package[(*package_counter)].synbol = strdup(synbol);
package[(*package_counter)].val ue = strdup(val ue);

/'l increment package counter array of struct
(*package_counter) ++

/1 dynamic resize array if nore nmenory is required
if ((*package_counter) == array_size) {
array_size+=10; // grow array in increnments of 10

package = (struct dynam c_packet
*)real | oc(package, si zeof (struct dynam c_packet)*array_si ze);

}
}
while ((file_status !'=0) && (file_status !=EOF));
fclose(pifp), // close file

test _print_dynam c_packet (package, *package_counter);

}
/1 free nmenory
free(title);

free(symnbol);
free(val ue);
[l free(pifp);

return (package);

/**
*

*

188

* test_print_dynam c_packet()-This function displays all information in
* the array of dynam c_packet struct.

*

* - input:

* - struct dynam c_packet * packet - array of struct

* - int package_counter - used for the size of the struct
* array

* - output: void.

*

*

*

***/

void test_print_dynam c_packet (struct dynam c_packet *packet, int
packet counter){

int counter;
for (counter = 0; counter < packet_counter; counter++) {

LOG DBG ((LOG POLI CY, 40, "Packet: 9% ", counter));

LOG DBG ((LOG POLICY, 40, "Title: %", packet[counter].title));
LOG DBG ((LOG POLI CY, 40, "Synbol: % ", packet[counter].synbol));
LOG DBG ((LOG POLI CY, 40, "Value: %", packet[counter].value));

/**
*

*

* Function: conf_kn_parse()function called to activate the DNF

security proposa
* par si ng nmechani sm

*
* - Il nput:

* - int trans - used for the transaction nunber for
* sequenti al processing.
*
*
*

- Qutput: void.
***/
voi d conf_kn_parse(int trans) {

char *suite_title; // used for default phase 2 title

char *suite; /1 used to hold constructed suites

char *namekn; /1 used to hold name of keynote file
char *buffer_kn; /1 used to hold contents of keynote file
char *buff _tenp; /1 used to traverse keynote file

struct stat stkn; // used to deternine the size of the file
of f _t szkn;
int fdkn;

189

i nt not_done=1;

i nt not_found=1;

char * section;

int buff _tenp_counter=0;
int buff tenp_end;

int SA counter = O;

int suite_ list_size = 2;

struct dynam c_packet *package;
i nt package_si ze=0;

struct suite_struct * suite_list;
struct suite_struct * default_suite_profile;

/1l Initialize the array of structures used to hold parsed security
/1 proposal information.

suite list = (struct suite_struct *)nmall oc(sizeof (struct
suite_struct)*suite_list_size);

/1 Initalizing the default suite structure

default _suite profile = (struct suite_struct*) malloc (sizeof(struct
suite_struct));

section = (char*) malloc (100);

suite title = (char *) mall oc(100);
suite = NULL; //(char *) mall oc(100);
namekn = (char *) mall oc(100);

default_suite_profile =
initialize default _suite_profile(default_suite profile);

suite title = strcpy (suite_title,"Default-Phase-2-Suite");
nanmekn = strcpy (nanekn,"/etc/isaknpd/ keynotednffinal.policy");

/1 call function to retireve dynani c_paraneters and | oad theminto
struct

package = package_dynam c_par anet ers(&package_si ze);
if ((fdkn = open(nanmekn, O RDONLY, 0))== -1) {
LOG DBG ((LOG PCLI CY, 40, "ERROR OPENNI NG FILE %", errno));

}

el se {

LOG DBG ((LOG_POLICY, 40, "OPENED KEYNOTE FILE",""));

}
if (stat (namekn, &stkn) == -1)

LOG DBG ((LOG_POLI CY, 40, "STAT FAILED %", namekn));

190

}

/1 allocate menory for file buffer
szkn = stkn.st_size;

buffer_kn = (char *) malloc(szkn);
buff _tenp = (char*) nmall oc(szkn);

/1l read in file into buffer
if (read(fdkn, buffer_kn, szkn) !=szkn) {

LOG DBG ((LOG POLICY, 40, "ERROR READI NG KEYNOTE FILE",""));
}
cl ose(fdkn);

buff _tenp = buffer_kn;
buff _tenp_end = szkn-1

not found=1;
/'l search thru and find the next open parathesis

while (buff_tenp_counter <= buff_tenp_end) {
if (buff_tenp[buff _tenp_counter] == "'(") {

if (DNF_parse(&suite, buff_tenp, &buff_tenp_counter, szkn
&suite_list[SA counter], package, package_size, suite_list, SA counter)
==]_){
SA count er ++;
test_print_suite_ list(suite_list,SA counter);

}

el se {
not _found = O;
}/ 1 end el se
} /1 end of if
buff _tenp_counter ++;
if (buff_tenp_counter <= buff_tenp_end) {
if (SA counter == suite_l|ist_size) {
suite_list_size+=2; // grow array in increnents of 2
test_print_suite_ list(suite_list,SA counter);

suite_list = (struct suite_struct

191

*Jrealloc(suite_list,sizeof(struct suite_struct)*suite_list_size);

}
}

}// end while
/1 if no matches found..
if (SA _counter == 0) {
LOG DBG ((LOG POLICY, 40,"No matches were found.... No SA' s
Loaded from Keynote DNF",""));
LOG DBG((LOG POLICY, 40, "Calling Load Default SA function.."));

| oad_default_sa(default_suite_profile);

}

else { // matches found..
LOG DBG ((LOG POLICY, 40,"% Matches were found.... Matching SA s
Loaded from Keynote DNF", SA counter));
test _print_suite_ list(suite_list,SA counter);

send_to_conf_set(trans,suite_title,suite,suite_list,SA counter
default_suite_profile);

test_conf _get _str();

}
}
/**
*
* Function: test_print_suite_list()- displays all security
* proposal s that currently exist in the array of
* structures. This function can be used for error checking
* and debuggi ng.
* - Il nput:
* - struct suite_struct *suite_list — pointer to the array
* of security proposals.
* - int struct_size — nunber of current structures in the
* array.
*
* - Qutput: void.
*
*

***/

void test_print_suite_list(struct suite_struct *suite_list, int
struct_size) {

int count = O;

192

LOG DBGE (LOG _POLI CY, 40,"TEST PRINT SU TE LI ST",""));
LOG DBGE (LOG POLI CY, 40,"Struct Size:% ",struct_size));

for (count = 0; count < struct_size; count++) {

LOG _DBG((LOG_POLI CY, 40, "STRUCT NODE: % ", count));
LOG DBG ((LOG POLI CY, 40, "SU TE

NAME: %", suite_list[count].suite_name));
/1 LOG DBG ((LOG POLI CY, 40, "SU TE NAME

size:% ",strlen(suite_list[count].suite_nane)));

/1 LOG_DBE (LOG_POLI CY, 40, "Poi nter address of suite_nanne:
%",suite_list[count].suite_name));

LOG DBG ((LOG POLICY, 40, "SU TE
PROTOCOL: %", suite_list[count].suite_protocol));
LOG DBG ((LOG POLICY, 40, "SU TE
TRANSFORM %", suite_list[count].suite_transform);
LOG DBG ((LOG POLICY, 40, "SU TE TRANSFORM
ID: %", suite_list[count].transform.id));
LOG DBG ((LOG POLI CY, 40, "SU TE ENCAPSULATI ON
MODE: %", suite_|ist[count].encapsul ati on_node));
LOG DBG ((LOG POLI CY, 40, "SU TE GROUP
DESCRI PTI ON: %", suite_list[count].group_description));
LOG DBG ((LOG POLICY, 40, "SU TE AUTHENTI CATI ON
ALGORI THM %", suite_list[count].authentication_algorithm);
LOG DBG ((LOG POLICY, 40, "SUITE LIFE: %",suite_list[count].life));
LOG DBG ((LOG POLI CY, 40, "LIFE
TYPE: %", suite_list[count].life_type));
LOG DBG ((LOG POLI CY, 40, "LIFE
DURATI ON: %", suite_list[count].life_duration));
LOG DBG ((LOG POLI CY, 40, "COPY
FLAG % ",suite_list[count].copy_flag));

}
}

/**

*
* Function: test _print_suite_struct()- displays security

* proposal info in a suite structure. This function can be
* used for error checking and debuggi ng.

* - Input:

* - struct suite_struct *suite_list — pointer to the

* security proposal structure.

*

*

*

*

- Qutput: void.

***/

void test_print_suite_struct(struct suite_struct *suite) {

LOG DBG (LOG _POLI CY, 40,"TEST PRI NT SU TE STRUCT",""));
LOG DBG ((LOG _POLICY, 40, "SU TE NAME: %", suite->suite_nane));

193

LOG DBG ((LOG _PCLI CY, 40, "SU TE PROTOCOL: %", sui te-
>sui te_protocol));

LOG DBG ((LOG POLICY, 40, "SU TE TRANSFORM %", suite-
>suite_transform);

LOG DBG ((LOG POLICY, 40, "SU TE TRANSFORM | D: %", sui t e-
>transform.id));

LOG DBG ((LOG POLICY, 40, "SU TE ENCAPSULATI ON MODE: %", sui t e-
>encapsul ati on_node)) ;

LOG DBG ((LOG PCOLI CY, 40, "SU TE GROUP DESCRI PTI ON: %", sui t e-
>group_description));

LOG DBG ((LOG POLICY, 40, "SU TE AUTHENTI CATI ON ALGORI THM %", sui t e-
>aut hentication_al gorithm)

LOG DBG ((LOG POLICY, 40, "SU TE LIFE: %",suite->life));

LOG DBG ((LOG POLICY, 40, "LIFE TYPE: %",suite->life_type));

LOG DBG ((LOG POLI CY, 40, "LIFE DURATION: %", suite->life_duration));

LOG DBG ((LOG POLICY, 40, "COPY FLAG % ", suite->copy_flag));

int test_suite_structure(struct suite_struct * suite_profile,int
struct_size) {
int result = 1;
int count;
for (count

0; count < struct_size; count++) {
if (suite_profile[count].copy flag == 1) {

LOG DBG ((LOG POLICY, 40, "copy flag set...skipping suite
test",""));

}
el se {

LOG DBG ((LOG POLICY, 40, "copy flag not set...performng suit
test",""));

if (suite_profile[count].suite_name == NULL) {

LOG DBG ((LOG POLICY, 40, "suite_name is enpty on struct #:
% ", count));
LOG DBG ((LOG POLICY, 40, "entry required... suite_struct test
failed..",""));
return(0);
}

if (suite_profile[count].protocol _id == NULL) {
LOG DBG ((LOG_POLI CY, 40, "protocol _id is enpty on struct #:
% ", count));
LOG DBG ((LOG_POLICY, 40, "entry required... suite_struct test

194

failed..",""));
return(0);

}

if (suite_profile[count].transformid == NULL) {
LOG DBG ((LOG POLICY, 40, "transform.id is enpty on struct #:
% ", count));
LOG DBG ((LOG POLICY, 40, "entry required... suite_struct test
failed..",""));
return(0);

}
}

return(result);

/**

*

* Function: int duplicate_sa ()— conpares the security proposals

* list with new security proposal for duplicates.

* - Input:

* - struct suite_struct * suite_ list — pointer to a security
* proposal |ist/array.

* - int suite_count — nunber of security proposal in the

* array.

*

- struct suite_struct *suite_profile — pointer to the new
* security proposal
* - Qut put:
* - Int — used as Boolean flag. Returns 1 (true) if new
* security proposal is a duplicate. Returns false if new
* security proposal is not a duplicate.
*
*

***/

int duplicate_sa (struct suite_struct * suite_list, int
suite_count,struct suite_struct *suite_profile) {

i nt count 1=0;

int true = 1;

int false = 0;

for (countl = 0; countl < suite_count; count1++) {
if (((suite_list[countl].ah_auth_al g==NULL) && (suite_profile-
>ah_auth_al g==NULL)) || (((suite_list[countl].ah_auth_alg!=NULL) &&
(suite_profile->ah_auth_al g!=NULL)) &&

195

(strcnp(suite_list[countl].ah _auth_alg,suite_profile->ah_auth_alg) ==

0))) {

if (((suite_list[countl].esp_auth_al g==NULL) && (suite_profile-
>esp_aut h_al g==NULL)) || (((suite_list[countl].esp_auth_al g!'=NULL) &&
(suite_profile->esp_auth_al g!'=NULL)) &&
(strcnp(suite_list[countl].esp_auth_alg,suite_profile->esp_auth_alg) ==

0))) {

if (((suite_list[countl].esp_enc_al g==NULL) && (suite_profile-
>esp_enc_al g==NULL)) || (((suite_list[countl].esp_enc_alg!=NULL) &&
(suite_profile->esp_enc_al g!=NULL)) &&
(strcnp(suite_list[countl].esp_enc_alg,suite profile->esp_enc_alg) ==

0))) {

if (((suite_list[countl].encapsul ation_node==NULL) &&
(suite_profil e->encapsul ati on_node==NULL)) |
(((suite_list[countl].encapsul ati on_node! =NULL) && (suite_profile-
>encapsul ati on_node! =NULL)) &&
(strcnp(suite_list[countl].encapsul ati on_node, suite_profile-
>encapsul ati on_node) == 0))) {

if (((suite_list[countl].group_description==NULL) &&
(suite_profile->group_description==NULL)) |
(((suite_list[countl].group_description!=NULL) && (suite_profile-
>group_description! =NULL)) &&
(strcnp(suite_list[countl].group_description,suite_profile-
>group_description) == 0))) {

if (((suite_list[countl].life==NULL) && (suite_profile-
>l ife==NULL)) || (((suite_list[countl].lifel=NULL) && (suite_profile-
>l ifel =NULL)) && (strcnp(suite_list[countl].life,suite_profile->life)
==0))) {

if (((suite_list[countl].life_type==NULL) &&
(suite_profile->life_type==NULL)) |
(((suite_list[countl].life_type!=NULL) && (suite_profile-
>l ife_type! =NULL)) &&
(strcenp(suite_list[countl].life_type,suite profile->life_type) == 0)))
{

if (((suite_list[countl].life_duration==NULL) &&
(suite_profile->life_durati on==NULL)) |
(((suite_list[countl].life_duration!=NULL) && (suite_profile-
>l ife_duration!=NULL)) &&
(strcenp(suite_list[countl].life_duration,suite _profile->life_duration)

==0))) {

if (((suite_list[countl].pfs==NULL) && (suite_profile-
>pfs==NULL)) || (((suite_list[countl].pfs!=NULL) && (suite_profile-
>pfs!=NULL)) && (strcnp(suite_list[countl].pfs,suite_profile->pfs) ==

196

0))) {

if (((suite_list[countl].key_Iength==NULL) &&

(suite_profil e->key_| engt h==NULL)) |

(((suite_list[countl].key |ength!=NULL) && (suite_profile-

>key |l ength! =NULL)) &&

(strcenp(suite_list[countl].key length,suite_profil e->key_ | ength)

0))) {

suite_profile->copy_flag = 1

LOG _DBG ((LOG_POLICY, 40,

copy flag",""));
return (true);

return (false);

"Match found setting

/***

— this functions sends parsed

* suite_profile — points to the

*

* Function: send_to_conf_set()

* information to conf_set in the correct syntax.

*

* - lnput:

* - int trans — transaction nunber.

* - char * suite_title — holds title for tag defined in
* previ ous function.

* - char * suite — holds set of security proposals
* - struct suite_struct

* list/array of suite structures.

* - int struct_size — holds the size of the list.
* - Qut put: None.

*

*

***/

void send_to_conf_set(int trans,char * suite_title,
int struct_size,

struct suite_struct * suite_profile,
suite_struct * default_suite_profile) {

char * section = (char *) nalloc(100);
char * title = (char *) malloc(100);
i nt count =0;

197

char * suite,

struct

int tenmpsize = 0;
char * tenpl, *temp2, *tenp3 = mall oc(100);
strcpy(section,"General");
if (suite == NULL) {
LOG DBG ((LOG POLICY, 40, "loading error: suite is null",""));
LOG DBG ((LOG POLI CY, 40, "Aborting suite struct load",""));

LOG DBG ((LOG POLI CY, 40, "loading default default suite
structure",""));

| oad_default_sa(trans,section,suite title,default_suite_profile);

return;

}
el se {

LOG DBG ((LOG POLICY, 40, "Suite Set conplete....continuing",""));
LOG DBG ((LOG POLICY, 40, "Testing suite structures for mn
requi rements",""));

if (test_suite_structure(suite_profile, struct_size) == 1) {

LOG DBG ((LOG POLICY, 40, "Suite Structure has mn required

entries... continuing |oading process",""));
}
el se {
LOG DBG ((LOG POLICY, 40, "Suite Structure does not have mn
requirenents...",""));

LOG DBG ((LOG _PCLI CY, 40, "Aborting suite struct |oad",""));
LOG _DBG ((LOG_PCLICY, 40, "Loadi ng default suite structure”,""));

| oad_default_sa(trans,section,suite_title,default_suite_profile);

return,;

}
}

LOG DBG ((LOG POLICY, 40, "Loading suite set into conf_set...",""));
conf_set(trans, section, suite_title, suite,0,0);

for (count = 0; count < struct_size; count++) {
if (suite_profile[count].copy flag == 0) {

LOG DBG ((LOG POLICY, 40, "Loading suite# % into conf_set
...",count));

LOG DBG ((LOG POLI CY, 40, "Loading suite_protocol into conf_set
SNt

198

section = strcpy (section,suite_profile[count].suite_nane);
title = strcpy(title, "Protocols");

conf_set(trans,section,title,suite_profile[count].suite_protocol, 0, 0);

LOG DBG ((LOG POLI CY, 40, "Loading protocol _id into conf_set
ST,

section = strcpy (section,suite_profile[count].suite_protocol);
title = strcpy(title, "PROTOCOL_ID");

conf_set(trans,section,title,suite_profile[count].protocol _id,Q0,Q0);

LOG DBG ((LOG POLICY, 40, "Loading suite_transforminto conf_set
ST,

title = strcpy(title, "Transforns");

conf_set(trans,section,title,suite_profile[count].suite_transformo,O0);

LOG DBG ((LOG POLICY, 40, "Loading transform.id into conf_set
L))

section = strcpy (section,suite_profile[count].suite_transform;
title = strcpy(title, "TRANSFORM I D");

conf_set(trans,section,title,suite_profile[count].transform.id,O0,0);

LOG DBG ((LOG POLI CY, 40, "Loadi ng encapsul ati on_node i nto conf_set
SNt

section = strcpy (section,suite_profile[count].suite_transform;
title = strcpy(title, "ENCAPSULATI ON_MODE");

if (suite_profile[count].encapsul ati on_nbde == NULL) {

LOG DBG ((LOG POLI CY, 40, "loading error: encapsul ati on_node is
nul 1", ""));

LOG DBG ((LOG POLI CY, 40, "l oading default encapsul ation

node",""));
LOG DBG ((LOG POLI CY, 40, "default encapsul ati on node:

%", default_suite_profil e->encapsul ati on_node));
conf_set(trans,section,title,default_suite_profile-

>encapsul ati on_node, 0, 0) ;

}

el se {

conf_set(trans,section,title,suite_profile[count].encapsul ati on_node, O,
0);

}

LOG DBG ((LOG POLI CY, 40, "Loading group_description into conf_set
"))

section = strcpy (section,suite_profile[count].suite_transform;
title = strcpy(title, "GROUP_DESCRI PTION');

199

if (suite_profile[count].group_description == NULL) {

LOG DBG ((LOG POLI CY, 40, "loading error: group_description is
null™,""));

LOG DBG ((LOG POLI CY, 40, "l oading default
group_description",""));

conf_set(trans,section,title,default_suite_profile-
>group_description,0,0);

}

el se {

conf_set(trans,section,title,suite_profile[count].group_description, 0,0
)
}

section = strcpy (section,suite_profile[count].suite_transform;
title = strcpy(title, "AUTHENTI CATI ON_ALGORI THM') ;

if ((suite_profile[count].authentication_algorithm==
NULL) &&(strcnp(suite_profile[count].protocol _id,"IPSEC AH') == 0)) {

LOG DBG ((LOG_POLI CY, 40, "l oading error:
aut hentication_algorithmis null",""));

LOG DBG ((LOG POLICY, 40, "AH SA... using transformid to |oad
aut hentication algorithn,""));

/1 LOG _DBG ((LOG POLICY, 40, "loading default
aut hentication_al gorithni,""));

conf_set(trans,section,title,strcat("HMAC ", default_suite_profile-
>aut hentication_al gorithm, 0, 0);

}

else if ((suite_profile[count].authentication_algorithm ==
NULL) &&(strcnp(suite_profil e[count].protocol _id,"IPSEC ESP') == 0)) {

LOG DBG ((LOG POLI CY, 40, "no authentication algorithmfound for
ESP suite...",""));

LOG DBG ((LOG _POLI CY, 40, "Assuming no ESP aut henctication
al gorithm needed... no default loading..",""));

}

el se {
LOG DBG ((LOG POLI CY, 40, "Loadi ng authentication
algorithm..",""));

conf_set(trans,section,title,suite_profile[count].authentication_al gor
thm 0, 0);
}
200

section = strcpy (section,suite_profile[count].suite_transform;
title = strcpy(title, "Life");

if ((suite_profile[count].life ==
NULL) || (suite_profile[count].life_type ==
NULL) | | (suite_profile[count].life_duration == NULL)) {

LOG DBG ((LOG POLICY, 40, "loading error: 1 or nore life tine
paranmeters are null",""));

LOG DBG ((LOG _POLICY, 40, "loading default life
paranmeters”,""));
conf_set(trans,section,title,default _suite profile->life, 0,0);
section = strcpy(section,default_suite_profile->life);
title =strcpy(title, "LIFE_TYPE");
conf_set(trans,section,title,default_suite_profile-
>life_type, 0,0);
title = strcpy(title,"LlI FE_DURATI ON");
conf_set(trans,section,title,default_suite_profile-
>l i fe_duration,0,0);

}

el se {
LOG DBG ((LOG POLICY, 40, "loading life paraneters...",""));
LOG DBG ((LOG PCLICY, 40, "Life title....",""));
conf_set(trans,section,title,suite prof|le[count] life, 0,0);

section = strcpy(section,suite_profile[count].life);
title =strcpy(title, "LIFE_TYPE");

LOG DBG ((LOG POLICY, 40, "Life_Type....",""));
conf_set(trans,section,title,suite_profile[count].life_type,0,0);
title = strcpy(title,"LI FE_DURATI ON") ;
LOG DBG ((LOG POLICY, 40, "Life_Duration....",""));
conf_set(trans,section,title,suite_profile[count].life_duration,O,Q0);

}

}

el se {

LOG DBG ((LOG POLI CY, 40, "Skipping a duplicate sa in
send_to_conf_set",""));

}
}
}

/'l Load conf_set with default val ue

/**

- Function: void | ocad_default_sa()- | oads default security proposa
into conf_set().

- I nput:
- int trans — transaction nunber required for conf_set()
- char * section — character string defined in calling

201

b I . N

* function

* - char * title — character string defined in calling

* function

* - struct suite_struct* default_suite_profile — default
* suite structure for the default security proposa

* par anet ers.

* - Qutput: void.

*

**/

void |l oad_default_sa(int trans,char * section, char * title,struct
suite_struct* default_suite_profile) {

LOG DBG ((LOG POLI CY, 40, "Loading default sa's...",""));

conf_set(trans, section, title, default_suite_profile-
>sui te_nane, 0, 0);

section = strcpy (section,default_suite_profile->suite_nane);

title = strcpy(title, "Protocols");

conf_set(trans,default_suite_profile-
>suite_nanme,title,default_suite_profil e->suite_protocol, 0, 0);

section = strcpy (section,default_suite _profile->suite_protocol);
title = strcpy(title, "PROTOCOL_ID");
conf_set(trans,section,title,default_suite_profile->protocol _id,0,0);

title = strcpy(title, "Transforns");
conf_set(trans,section,title,default_suite_profile-
>suite_transformO, 0);

section = strcpy (section,default_suite_profile->suite_transform;

title = strcpy(title, "TRANSFORM I D");

conf_set(trans,section,title,default_suite_profile-
>transform.id, 0, 0);

section = strcpy (section,default_suite_profile->suite_transform;

title = strcpy(title, "ENCAPSULATI ON_MODE") ;

conf_set(trans,section,title,default_suite_profile-
>encapsul ati on_node, 0, 0) ;

section = strcpy (section,default_suite_profile->suite_transform;

title = strcpy(title, "GROUP_DESCRIPTI ON");

conf_set(trans,section,title,default_suite_profile-
>group_description,0,0);

section = strcpy (section,default_suite_profile->suite_transform;
title = strcpy(title, "AUTHENTI CATI ON_ALGORI THM') ;
conf_set(trans,section,title,default_suite_profile-

>aut hentication_al gorithmO0,O0);

section = strcpy (section,default_suite_profile->suite_transform;

title = strcpy(title, "Life");
conf_set(trans,section,title,default_suite_profile->life, 0,0);

section = strcpy(section,default_suite_profile->life);

202

title =strcpy(title, "LIFE_TYPE");
conf_set(trans,section,title,default_suite_profile->life_type,0,0);

title = strcpy(title,"LlI FE_DURATI ON");
conf_set(trans,section,title,default_suite_profile-

>l i fe_duration,0,0);

}

/**

*
*
*
*
*
*

*

*

Function: struct suite_struct* struct_initialization()- used to
initialize each suite structure.

- Input: - struct suite_struct * suite _profile — holds the
pointer to suite structure.
- Qutput: - returns the newly initialized structure.

**/

struct suite_struct * struct_initialization(struct suite_struct *
suite_profile) {

}

/

/ initialize struct
suite_profile->suite_name = NULL
suite_profile->suite_protocol = NULL
suite_profile->suite_transform= NULL
suite_profile->transform.id= NULL
suite_profil e->protocol _id= NULL
suite_profil e->encapsul ati on_node= NULL
suite_profile->group_description= NULL
suite_profile->authentication_al gorithm= NULL;
suite_profile->life= NULL
suite_profile->life_type= NULL
suite_profile->life_duration= NULL
suite_profile->esp = NULL
suite_profile->ah = NULL

suite_profil e->esp_enc_alg = NULL
suite_profile->esp_auth_alg = NULL
suite_profile->ah_auth_alg = NULL
suite_profile->pfs = NULL
suite_profile->key length = NULL
suite_profile->copy_flag = 0;

return (suite_profile);

/***

*

*
*
*
*
*
*

Struct suite_struct * initialize_default_suite()

Initializes default suite in the event of failure to properly
| oad a security proposal

***/

203

struct suite_struct * initialize_default_suite_profile(struct
suite_struct *tenp_ss) {

/1 struct suite_struct tenp_ss;
/1 initialize struct

LOG DBG ((LOG POLICY, 40, "in initialize_default_suite_profile",""));
tenp_ss->suite_nanme = strdup(" Qw ESP- AES- SHA- PFS- SUI TE") ;

LOG DBG ((LOG PCLI CY, 40, "test1",""));
tenp_ss->suite_protocol = strdup("” Qw ESP- AES- SHA- PFS") ;
tenp_ss->suite_transfornme strdup(” QW ESP- AES- SHA- PFS- XF") ;
tenp_ss->transform.id= strdup("AES");

LOG DBG ((LOG POLICY, 40, "test2",""));
tenp_ss->protocol _id= strdup("!|PSEC _ESP");
tenp_ss->encapsul ati on_nmode= strdup("” TUNNEL") ;
tenmp_ss->group_descri ption= strdup("MODP_1024");
tenp_ss->aut henti cation_al gorithm= strdup("HVAC SHA");

LOG DBG ((LOG PCLICY, 40, "test3",""));

tenp_ss->life= strdup("LI FE_3600_SECS");
tenp_ss->life_type= strdup("SECONDS") ;
tenp_ss->life_duration= strdup("3600,1800: 7200");
tenp_ss->copy_fl ag=0;

return (tenp_ss);

}

/***

Function: int dynam c_package_verification() - used to check

dynanmi ¢ paranmeters of DNF security proposal assertions.

- I nput:
- char * buff_tenmp — character string/buffer used to hold
the i saknpd. conf/KeyNote file being parsed.
- int *buff _tenp_counter — index used for parsing the
buff _tenp.
- int buff_tenp_end — index to | ast character of buffer
used to check for end-of-file (EOF) condition
- struct dynam c_packet * package — structure that hol ds
current value of the dynam c paraneters.
- int package_size — size of array of dynam c_packet
structure.
- int szkn — size of KeyNote file.

- Qut put:
- int — used as a Boolean flag to indicate if DNF security
proposal assertion dynamic paranmeters match. Return O
(false). Return 1 (true).

E R I N S T I B R T T

* ok X X X Ok

***/

i nt dynam c_package_verification(char * buff_tenp, int
*puff _tenp_counter, int buff_tenp_end, struct dynam c_packet * package,
i nt package_size, int szkn) {

int temp_buff = *buff_tenp_counter

204

int | oop_counter;

/1 used to verify that all packages paraneters exist in expression
i nt package_counter_check = 0;

i nt not_done = 1;
int result = 0;
int dynam c_test_counter = 0; // used to count matches
char * testprint = (char*)malloc(buff_tenp_end + 50);
/11 oop through dynam c package array to check for matching paraneters
if ((buff_tenp_end - (tenp_buff)) > 0) {
testprint =
strncpy(testprint, &uff_tenp[*buff_tenp_counter], (buff_tenp_end -
tenmp_buff));

}
el se LOG DBG ((LOG POLICY, 40, "Here is our problent,""));

for (loop_counter = 0;loop_counter < package_size; | oop_counter++)
{ /1l reseting tenp pointer for scan
tenmp_buff = *buff_tenp_counter
not _done = 1; // reset for while | oop
whil e (not_done==1) {
/1l check to see if first letter matching
if ((buff_tenp[tenp_buff] == package[l oop_counter].title[0])
&&((tenp_buff + strlen(package[loop_counter].title)) < szkn)) {
/1 if result is false not a match return false..
result =
verify_ paranmeter(buff_tenp, & enp_buff, package[| oop_counter].title,

package[| oop_counter]. val ue, buff_tenp_end);

/1 if dynamic paraneter title found but value does not match
/ladvance to next DNF expression and exit

if (result == 0) {

advance_to_end_DNF(buff _tenp, buff_tenp_counter, buff_tenp_end);

return (0); // return false

}
205

/1 if dynanmic paranmeter title found and val ue natches. .. MATCH
if (result == 1) {
package_counter _check++
not _done =0; // set flag to exit while |oop
}
/1 title match not found keeping | ooking..
if (result == 2) {
}
}
if (buff _tenp[tenp_buff] =="]") {
not _done = O;
}
el se {
/'l Check to see if at end of file
if (*buff_tenp_counter >= szkn) {
not _done = O;
}
el se {
t enp_buf f ++
}
}
}
} /1 end of for |oop
/1 if counter match all conditions met return true
i f (package_counter_check == package_size) {
LffLDBG ((LOG_POLICY, 40, "All conditions met.... returning
true",""));

return (1); // return true;

else { // not all conditions net....

206

LOG DBG ((LOG POLICY, 40, "Not all conditions net....advancing

book mark and return false...",""));

}
/

*

*

L T T

L I S T T S T

L S T R B

// advance pointer to next expression

advance_to_end_DNF(buff _tenp, & enp_buff, buff _tenp_end);

/1l set actual buffer place holder to advanced marker
(*buff _tenp_counter) = tenp_buff;

/'l return false;
return (0);

SRR S I R R R I S I S R R R I R R I I I R R I I I I

Function: int DNF_parse()- This function parses each security

proposal found.
- I nput:

- Note: That in order to facilitate dynam c nmenory
use, pointer to pointer coding syntax at tinmes
was required. By having a pointer to a pointer
menory created in a function will still be
resident/within scope after returning fromthe
functi on.

- char **suite — holds the set of security proposals.

Pointer to a pointer used to for dynam c nmenory

creation.

- char *buff_tenmp — string buffer hol ding the DNF

file.

- int* buff_tenp_counter — |ocation of parsing index.

Pointer to integer is used to allow for pass by

ref erence.

- int szkn — size of filelstring buffer

- struct suite_struct *suite_profile — pointer to
suite structure.
- Qut puts:
- integer
— returns 1 (false) if parse routine
successful .

- returns 0 (false) otherw se

**/

nt DNF_parse(char **suite, char *buff_tenp, int * buff_tenp_counter
nt szkn, struct suite_struct *suite_profile, struct dynam c_packet *

package, int package_size, struct suite_struct *suite_list, int
SA counter) {

i nt success =0;

char *tenp_nane, *tenp_val ue;
i nt not_done = 1;

/lint para_counter=0;

int buff _tenp_end = szkn -1;

207

int tenmp_size=0;

int completed = 1;// if dynam c paraneters are mnet
tenmp_name = (char*)mal |l oc(100);

tenp_val ue =(char*) mal | oc(100);

suite profile = struct __initialization(suite_profile);

LOG DBG ((LOG_PCLI CY, 40, "ENTERI NG DNF PARSE",""));

/1 check expression dynam c paraneter matching

// if false... return

i f (dynam c_package_verification(buff_tenp, buff_tenp_counter
buff _tenp_end, package, package_size, szkn)==0) {

return (0) ;
}
el se {
LOG DBG ((LOG _POLI CY, 40, "Dynamic package conditions were
met!...preceding to performparsing ...",""));
}

while (not_done == 1) {
/1 Check for ESP

if ((buff_tenp[*buff_tenp_counter] == 'e')&&((*buff_tenp_counter +
strlen("esp_present”)) < szkn)) {

tenp_nanme = "esp_present",;

tenp_size 3;

success=0;
parse_i psec_para_tag(buff_tenp, buff_tenp_counter, tenp_nane, &uite_pr of
| e- >esp, tenp_si ze, &success);

/1 if successful |oad esp protocol into structure

if (success == 1) {

suite_profile->protocol __id = strdup("I|PSEC ESP");

}
}

208

/] Check for ESP ENC ALG

if ((buff_tenmp[*buff_tenp_counter] == 'e')&&((*buff_tenp_counter +
strlen("esp_enc_alg")) < szkn)) {

tenp_name = "esp_enc_al g";
success=0;

LOG_DBG ((LOG POLI CY, 40, "CHECKI NG FOR ESP_ENC ALG',"")):

parse_i psec_paraneter (buff_tenp, buff_tenp_counter,tenp_nane, & suite_pro
file->esp_enc_alg), &success);

/1 if successful copy appropriate esp enc alg to structure
if (success == 1) {

suite_profile->transform.id = strdup(suite_profile->esp_enc_alg);

}

}
|/l Check for ESP AUTH ALG

if ((buff_tenp[*buff_tenp_counter] == 'e')&&(*buff_tenp_counter +
strlen("esp_auth_alg") < szkn)) {

tenp_name ="esp_auth_al g";
success=0;

parse_i psec_paraneter(buff_tenp, buff_tenp_counter,tenp_nane, &uite_prof
il e->authentication_al gorithm &uccess);

/1 if successful copy appropriate esp auth alg to structure
if (success == 1) {

char * tenp_holder = (char*)malloc(20);

char * tenp_holder2 = NULL;//(char*) malloc(20);

/'l check for HMAC- header on transform.id
if (suite_profile->authentication_algorithnf0] == "H) {

tenp_holder2 = strchr(suite_profile-
>aut hentication_algorithm'-");
[lsuite_profile->authentication_algorithnf4] =="'_";

(*tenmp_hol der2) ="' _";

t enp_hol der 2++
suite_profile->transformid
suite profile->esp_auth_alg

}

el se {

strdup(tenp_hol der 2);
strdup (tenp_hol der?2);

tenp_hol der = strcpy(tenp_hol der, "HVAC ");

suite_profile->esp_auth_alg = strdup(suite_profile-
>aut henti cation_al gorithm;

suite_profile->transformid = strdup(suite_profile-

209

>aut hentication_al gorithnm;
tenp_hol der = strcat(tenp_hol der,suite_profile-
>aut henti cation_al gorithm;
free(suite_profile->authentication_algorithm;

suite_profile->authentication_algorithm = strdup(tenp_hol der);

}

free(tenmp_hol der);
free(tenmp_hol der2);

}

}

/1l Check for AH
if ((buff_tenp[*buff_tenp_counter] == '"a')&&(((*buff_tenp_counter +
strlen("ah_present")) < szkn)) {

tenmp_name = "ah_present”;
success=0;
tenp_size = 2;

parse_i psec_para_tag(buff_tenp, buff_tenp_counter,tenp_nane, &uite_pr of
| e->ah, tenp_size, &uccess);

/1l if successful |oad ah protocol into structure

if (success == 1) {

suite_profile->protocol __id = strdup("|PSEC_AH");
}

/] Check for PFS

if ((buff_tenp[*buff_tenp_counter] == 'p')&&((*buff_tenp_counter +
strlien("pfs")) < szkn)) {

tenmp_name = "pfs";
success=0;

tenp_si ze

3;

parse_i psec_para_tag(buff_tenp, buff _tenp_counter,tenp_nane, &uite_prof
| e->pfs, tenp_size, &uccess);

if (success == 1) {
LOG DBG ((LOG POLICY, 40, "pfs= %",suite_profile->pfs));
}

210

}

/1 check for ah_auth_alg

if ((buff_tenp[*buff_tenp_counter] == "a')&&((*buff_tenp_counter +
strlen("ah_auth_alg")) < szkn)) {

tenmp_name = "ah_auth_al g";
success=0;

parse_i psec_paraneter (buff_tenp, buff_tenp_counter,tenp_nane,
&suite_profil e->authentication_al gorithm &success);

/1 if successful copy appropriate ah auth alg to structure
if (success == 1) {

char * tenp_holder = (char*)malloc(20);

char * tenp_holder2 = NULL;//(char*) malloc(20);

/1l check for HMAC- header on transform.id
if (suite_profile->authentication_algorithnfi0] == "H) {
/lsuite_profile->authentication_algorithni4] ="'_";
//tenp_holder2 = strchr(suite_profile-
>aut hentication_algorithm' _');
[/ tenp_hol der 2++
tenp_holder2 = strchr(suite_profile-
>aut hentication_algorithm'-");
(*tenmp_hol der2) ="' _";
t enp_hol der 2++
suite_profile->transform.id = strdup(tenp_hol der2);

suite_profile->ah_auth_alg = strdup (tenp_hol der2);

LOG DBG ((LOG POLI CY, 40, "Result of HMAC check/fix trans: %
alg: %",suite_profile->transformid, suite_profile-
>aut hentication_algorithm);

}

el se {

tenmp_hol der = strcpy(tenp_hol der, "HVAC ") ;

suite_profile->ah _auth_alg = strdup(suite_profile-
>aut hentication_al gorithn;

suite_profile->transformid = strdup(suite_profile-
>aut hentication_al gorithnm;

tenp_hol der = strcat(tenp_hol der,suite_profile-
>aut henti cation_al gorithm;

free(suite_profile->authentication_algorithm;

suite_profil e->authentication_algorithm= strdup(tenp_hol der);

}

free(tenp_hol der);
}

211

/1 check for esp_group_desc

if ((buff_tenmp[*buff_tenp_counter] == 'e')&&((*buff_tenp_counter +
strlen("esp_group_desc")) < szkn)) {

char * tenp_holder = NULL;//(char *) malloc(20);
tenp_nanme = "esp_group_desc";
success=0;
parse_i psec_paraneter (buff_tenp, buff_tenp_counter,tenp_nane, & em
p_hol der, &success);

/1 if successful |oad esp_group_desc into structure

if (success == 1) {
suite_profil e->group_description = strdup(tenp_hol der);
group_description_translation(&suite_profile-

>group_description);

free(tenp_hol der);

}

}

/1 check for ah_group_desc

if ((buff_tenp[*buff_tenp_counter] == "a')&&((*buff_tenp_counter +
strlen("ah_group_desc")) < szkn)) {

char * tenp_hol der=NULL; //(char*)nmalloc(100);
tenp_name = "ah_group_desc";
success=0;

parse_i psec_paraneter (buff_tenp, buff_tenp_counter,tenp_nane, & enp_hol de
r, &uccess);

/1 if successful |oad ah_group_desc into structure

if (success == 1) {
suite_profil e->group_description = strdup(tenp_hol der);
group_description_translation(&suite_profile-

>group_description);
free(tenp_hol der);

}

/'l check for esp_encapsul ation

if ((buff_tenp[*buff_tenp_counter] == 'e')&&((*buff_tenp_counter +
strlen("esp_encapsulation")) < szkn)) {

tenmp_name = "esp_encapsul ati on";
success=0;

212

parse_i psec_paraneter (buff_tenp, buff_tenp_counter,tenp_nane, &uite_prof
il e->encapsul ati on_node, &success);

}

/1 check for ah_encapsul ation

if ((buff_tenp[*buff_tenp_counter] == '"a')&&((*buff_tenp_counter +
strlen("ah_encapsul ation")) < szkn)) {

tenp_name = "ah_encapsul ati on”;
success=0;

parse_i psec_paraneter(buff_tenp, buff_tenp_counter,tenp_nane, &uite_prof
il e->encapsul ati on_npde, &success);

}

/1l check for esp_life_seconds

if ((buff_tenp[*buff_tenp_counter] == 'e')&&((*buff_tenp_counter +
strlen("esp_encapsulation")) < szkn)) {
tenmp_nanme = "esp_life_seconds";
success=0;

parse_i psec_paraneter (buff_tenp, buff_tenp_counter,tenp_nane, &uite_prof
ile->life, &uccess);

/1l if success then do esp life in seconds transal ation
if (success == 1) {

life_seconds_translation(&suite_profile->life, &uite_profile-
>l ife_type, &suite_profile->life_duration);

}
}

/'l check for ah_Ilife_seconds

if ((buff_tenp[*buff_tenp_counter] == '"a')&&((*buff_tenp_counter +
strlen("ah_life_seconds")) < szkn)) {

tenmp_name = "ah_|ife_seconds";
success=0;

parse_i psec_paraneter(buff_tenp, buff_tenp_counter,tenp_nane, &uite_prof
ile->life, &uccess);

/1 if success then do ah life in seconds transal ation

if (success == 1) {

213

life_seconds_translation(&suite_profile->life, &uite_profile-
>l ife_type, &suite_profile->life_duration);

}
}
/1 check for esp life tinme in kil obytes
if ((buff_tenp[*buff_tenp_counter] == 'e')&&((*buff_tenp_counter +
strlien("esp_life_kilobytes")) < szkn)) {
tenp_name = "esp_life_kil obytes”;
success=0;

parse_i psec_paraneter(buff_tenp, buff_tenp_counter,tenp_nane, &uite_prof
ile->life, &uccess);

/1 if success then do esp life in kilobytes transal ation
if (success == 1) {

life kilobytes translation(&suite profile->life, &uite profile-
>l ife_type, &uite_profile->life_duration);

}
}

/1 check for ah life tinme in kil obytes

if ((buff_tenp[*buff_tenp_counter] == "a')&&((*buff_tenp_counter +
strlen("ah_life_kilobytes")) < szkn)) {

temp_name = "ah_|ife_kilobytes";
success=0;

parse_i psec_paraneter (buff_tenp, buff_tenp_counter,tenp_nane, &uite_prof
ile->life, &uccess);

/1l if success then do ah |life in kilobytes transal ation
if (success == 1) {

life kilobytes translation(&suite profile->life,&suite_profile-
>life_type, &suite_profile->life_duration);

}
}

/1 check for end of DNF expression

if (buff _tenp[*buff_tenp_counter] =="]") {

LOG DBG ((LOG _POLI CY, 40, "END OF EXPRESSION',""));
214

not done = O;

if (add_para_val ues(suite, suite profile, suite_list, SA counter)

== 1) {

conpl eted =1;

}
el se {
conmpleted = O;
}
}
el se {
/1l Check to see if at end of file
if (*buff_tenp_counter >= szkn) {
not done = O;
}
el se {
(*buff _tenp_counter) ++;
}
}

}

return (conpl eted);

/***

Function: void |life_kilobytes_translation() - this function is
* used to convert lifetinme in kilobytes fromthe

* KeyNot e/ i saknpd. policy format to the isaknmpd. conf format.

* - I nputs:

- Note: That in order to facilitate dynam c nmenory
use, pointer to pointer coding syntax at tinmes was
required. By having a pointer to a pointer, nenory
created in a function will still be resident/wthin
scope after returning fromthe function

- char ** |ife — holds the initial life time input.
Pointer to a pointer used for dynam c nenory

al | ocati on.

- char ** |life_ type — holds the life tine type string
KI LOBYTES. Pointer to a pointer used for dynamc
menory al |l ocation

L B B T T I

*

215

L N S T T T T I

void life_kilobytes_ translation(char ** life,

**li

- char ** |ife_duration — holds the life tinme

duration string . Pointer to a pointer

- dynam c nenory all ocation
- Qutputs:

used for

- char ** |ife — used to return life tinme. Pointer to
a pointer used for dynam c nenory all ocation
- char ** |ife_type — used to return life time type

string KILOBYTES. Pointer to a pointer

dynam ¢ nmenory all ocati on.

used for

- char ** life_duration — used to return the life
time duration string . Pointer to a pointer used for

dynami c menory all ocation

fe_duration) {

if (strenp(*life, "1000")== 0) {

e

e

e

free(*life);

*life = strdup("LIFE_1000_KB");
*life_type = strdup("KILOBYTES");
*|ife_duration = strdup("1000, 768: 1536") ;

se if (strcmp(*life, "32000")== 0) {

free(*life);

*life = strdup("LIFE_32_MB");

*life_type = strdup("KILOBYTES");
*|ife_duration = strdup("32768, 16384: 65536");

se if (strcnp(*life, "45000000")== 0) {

free(*life);

*life = strdup("LIFE_4.5_GB");

*life_type = strdup("KILOBYTES");

*|ife_duration = strdup("4608000, 4096000: 8192000");

se {

free(*life);

*life = strdup("LIFE_1000_KB");
*life_type = strdup("KILOBYTES");
*life_duration = strdup("1000, 768: 1536");

216

**/

char **|ife_type, char

/***
*

*

* Function: void |life_seconds_translation() - this function is

* used to convert lifetinme in kilobytes fromthe

* KeyNot e/ i saknpd. policy format to the isaknpd.conf format.

* - lnputs:

* - Note: That in order to facilitate dynam c menory

* use, pointer to pointer coding syntax at tinmes was

* required. By having a pointer to a pointer, nenory

* created in a function will still be resident/wthin
* scope after returning fromthe function

* - char ** life — holds the initial life time input.
* Pointer to a pointer used for dynam c nenory

* al | ocation

* - char ** |ife_type — holds the life time type string
* SECONDS. Pointer to a pointer used for dynam c

* menory all ocation

* - char ** |life_duration — holds the life tine

* duration string . Pointer to a pointer used for

* - dynam c nenory all ocation

* - Qut puts:

* - char ** |ife — used to return life tinme. Pointer to
* a pointer used for dynam c nmenory all ocation

* - char ** |ife_type — used to return life tinme type
* string SECONDS. Pointer to a pointer used for

* dynanmi ¢ nmenory all ocation

* - char ** |life_duration — used to return the life

* time duration string . Pointer to a pointer used for
* dynam ¢ nmenory all ocation

*

*

**/

void life_seconds_translation(char ** |life, char**life_type, char
**|jfe_duration) {
if (strcmp(*life, "600")== 0) {
free(*life);
*life = strdup("LIFE_600_SECS");

*life_type = strdup("SECONDS") ;
*|ife_duration = strdup("600, 450: 720");

else if (strcnp(*life, "3600")== 0) {
free(*life);

*life = strdup("LI FE_3600_SECS");
*life_type = strdup("SECONDS") ;
*|ife_duration = strdup("3600, 1800: 7200");

217

el se {
free(*life);
*life = strdup("LIFE_3600_SECS");
*life_type = strdup("SECONDS");
*|ife_duration = strdup("3600, 1800: 7200");

/**

Function: void group_description_translation— this function is used to
convert group description fromthe KeyNote/isaknpd.policy syntax to the
i saknmpd. conf synt ax.

- I nputs:

- Note: That in order to facilitate dynamc nenory use, pointer to
poi nter coding syntax at times was required. By having a pointer to a
pointer, nmenory created in a function will still be resident/wthin
scope after returning fromthe function.

- char ** group_description— holds the initial group description
variable. Pointer to a pointer used for dynam c nenory allocation.

- Qut puts:

- char ** group_descri ption - used to return transl at ed
group_description. Pointer to a pointer used for dynamic nenory
al ocati on.

**/

voi d group_description_translation(char ** group_description) {
if (strcnp(*group_description, "1")== 0) {

free(*group_description);
*group_description = strdup("MODP_768");

}
else if (strcnp(*group_description,"2")==0) {

free(*group_description);
*group_description = strdup("MODP_1024");

}

else if (strcnp(*group_description,”"3")==0) {
free(*group_description);
*group_description = strdup("MODP_155");

}

else if (strcnp(*group_description,"4")==0) ({

free(*group_description);
218

*group_description = strdup("MODP_185");
}

else if (strcnmp(*group_description,"5")==0) {

free(*group_description);
*group_description = strdup("MODP_1536");

}
el se {
free(*group_description);
*group_description = strdup(”MODP_768");
}

/**

- Function: void add _para_values()- this function generates the
security proposal format required by the configuration process.

- Note: That in order to facilitate dynam c nenory use,
pointer to pointer coding syntax at tinmes was required. By having a

pointer to a pointer, nenory created in a function wll still be
resident/wi thin scope after returning fromthe function
- I nputs:
- char ** suite - holds the set of security proposals. Pointer to a
poi nter used to for dynam c nmenory creation
- struct suite_struct **suite profile — pointer to suite structure.

- Qut puts:
- char ** suite - returns the nodified set of security proposals.
Pointer to a pointer used to for dynam c nmenory creation.
- struct suite_struct **suite_profile — pointer to suite structure

used to return the nodified suite_profile structure.

**/

i nt add_para_val ues(char ** suite, struct suite_struct *suite_profile,
struct suite_struct * suite_list, int SA counter){

int success = 0;

char * tenp_hol d4;

/lint suite_current_I| ength=0;

int max_SA suite_size = 50;

/1 Checking for duplicate SA...

if (duplicate_sa(suite_list,SA counter,suite_profile) == 0) {

success = 1;

/] allocated enough space for SA
219

suite_profile->suite_name=(char*)nmall oc(max_SA suite_size);
if (*suite !'= NULL) {

if ((*suite =realloc(*suite, (strlen(*suite) +

max_SA suite_size))) == NULL) {
LOG DBG ((LOG _PCLICY, 40, "Menory Real location error...",""));
return(0);
}
(*suite) = strncat(*suite, ",", strlen(","));
}

else { // suite equals NULL

/1 Allocated max space needed for SA
(*suite)=(char*)mal | oc(max_SA suite_size);

/1l use length of string for coping of suite info at end of routine
suite_profile->suite_name = strcpy(suite_profile->suite_nane,"QV);
/'l check for mssing ESP or AH but existing ESP alg or AH alg

if ((suite_profile->esp == NULL) && (suite_profile->ah == NULL)) {
LOG DBG ((LOG PCLICY, 40, "ESP & AH are empty....",""));
/1 check for exisitng ESP enc alg or ESP auth alg then add ESP

if ((suite_profile->esp_enc_alg!= NULL)||(suite_profile-
>esp_aut h_al g! =NULL)) {

suite_profile->suite_name = strncat(suite_profile->suite_nane,"-
ESP", strlen("-ESP"));
}
/1 check for AH auth alg then add AH
else if (suite_profile->ah_auth_alg != NULL) {
suite_profile->suite_nane = strncat(suite_profile-

>suite_nanme,"-AH', strlen("-AH"));

}
}

/!l ESP or AH exist....

220

el se {

if (suite_profile->esp !'= NULL) {
suite_profile->suite_name = strncat(suite_profile->suite_nanme, "-
"“,strlien("-"));
suite_profile->suite_nanme = strncat(suite_profile-
>suite_nane,suite_profile->esp,strlen(suite_profile->esp));

else if (suite_profile->ah !'= NULL) {

strncat (suite_profile->suite_nane, "-

suite_profile->suite_nane
, strlen("-"));

suite_profile->suite_name = strncat(suite_profil e->suite_nane,
suite_profile->ah,strlen(suite_profile->ah));

}
}

if (suite_profile->esp_enc_alg !'= NULL) {

suite_profile->suite_name = strncat(suite_profile->suite_nane, "-
“,strlien("-"));

suite_profile->suite_name = strncat(suite_profile-
>suite_nane,suite_profile->esp_enc_alg,strlen(suite_profile-
>esp_enc_alg));

}
if (suite_profile->esp_auth_alg != NULL) {

suite_profile->suite_name = strncat(suite_profile->suite_nane, "-
",strlien("-"));

suite_profil e->suite_name strncat (suite_profile-
>suite_nanme,suite_profile->esp_auth_al g,strlen(suite_profile-
>esp_auth_alg));

}

if (suite_profile->ah_auth_alg !'= NULL) {

suite_profile->suite_name = strncat(suite_profile->suite_nane, "-
",strlien("-"));

suite_profile->suite_name = strncat(suite_profile-
>suite_nane,suite_profile->ah_auth_alg,strlen(suite_profile-
>ah_auth_alg));

}
/!l check for PFS .. if true add -PFS
// Check to make sure PFS is not NULL..

if (suite_profile->pfs !'= NULL) {
221

if (strcnp(suite_profile->pfs,"PFS")==0) ({

suite_profile->suite_nanme = strncat(suite_profil e->suite_name,"-

PFS", strlen("-PFS"));

}
}

el se {

LOG DBG ((LOG_PCLI CY, 40, "PFS is NULL",""));
}

/1 dynamially creat nmenory for SA info and generate proper SA syntax

suite_profile->suite_protocol = strdup(suite_profile->suite_nane);

suite_profile->suite_transform = (char*) malloc(strlen(suite_profile-

>suite_protocol) + 4);

suite _profile->suite_transform = strcpy(suite_profile-
>suite_transformsuite_profile->suite_protocol);

suite_profile->suite_transform= strncat(suite_profile-
>suite_transform"-XF",strlen("-XF"));

LOG DBG ((LOG POLI CY, 40, "Protocol suite: AFTER
%" ,suite_profile->suite_protocol));

LOG DBG ((LOG POLICY, 40, "Transformsuite: AFTER %s",suite_profile-

>suite_transform);

LOG DBG ((LOG POLICY, 40, "Suite Nanme before: % and size of:
% ",suite_profile->suite_nane,strlen(suite_profile->suite_nane)));

suite_profile->suite_name = strncat(suite_profile->suite_name,"-
SUl TE", strlen("-SU TE"));

LOG DBG ((LOG POLICY, 40, "Suite Nanme after: % and size of:
% ",suite_profile->suite_nane,strlen(suite_profile->suite_nanme)));

//dynanmically assign space if necessary to suite
if (*suite == NULL) {

(*suite) = strdup(suite_profile->suite_nane);

}

el se {

*suite = strncat(*suite, suite_profile->suite_nane,
strlen(suite_profile->suite_nane));

222

else { // duplicate exists....
success = 0;
}

return (success);

}

/**

Function: char * convert_to_uppercase()— converts a |lower case string
to an upper case string and returns the string.

- I nput:

- char * |owercase — | ower case string.
- Qut put:

- char * - returns uppercase string.

**/

char * convert_to_uppercase(char * |owercase_string) {
int string _size = strlen(lowercase_string);
char * uppercase_string = (char *) mall oc(100);
char tenp_char;
int c;
for (¢c=0; c< string_size; c++) {

tenp_char = | owercase_string[c];
tenp_char = toupper(tenp_char);

upper case_string = strncat (uppercase_string, & enp_char, 1) ;

}
| owercase_string = strcpy(l owercase_string, uppercase_string);

return (Il owercase_string);

/***

- Function: verify_paranmeter()—- checks input dynam c paraneter tag
value and if valid, conpares tag value with given value. Returns three
possi bl e fl ag val ues.

- I nput:
- char *buff_tenp — string buffer used for KeyNote
file.
- int *buff _tenp_counter - index of pointer in buff_tenp string
buf fer.

- char * sys_para_nane — Dynam c paraneter tag
- char * sys para_value — Dynanic paranmeter tag val ue

223

- int buff_tenp_end — index of end-of-file (EOF) in buff_tenp.
- Qut put:
- int — flag with the follow ng three val ues:
- 0 (dynam c paraneter tag val ue does not
mat ch)
- 1 (dynami c paraneter tag val ue natches)
- 2 (dynam c tag does not mmtch)

***/

int verify_paraneter(char *buff_tenp, int *buff_tenmp_counter, char *
sys_para_nane, char * sys para_value,int buff_tenp_end) {

int sys_para_nane_size = strlen(sys_para_nane);

int sys para_value_size = strlen(sys_para_val ue);
char * tenp_string = (char *) malloc(buff_tenp_end);
char * tenp_hold = (char*)nmalloc(100);

i nt success = 2;
char * tenp_str = (char *) malloc(100);

temp_str = strncpy(tenp_str, &uff_tenp[*buff_tenp_counter], 25);
tenmp_string= &buff_tenp[*buff_tenp_counter];
/1l conpare tag titles

if (strncnp (&buff_tenp[*buff_tenp_counter], sys_para_nane,
sys_para_nane_si ze) == 0) {

(*buff_tenp_counter)+= sys_para_nane_si ze
/1 advance pointer to "

while (buff_tenp[*buff_tenp_counter] !'="\"") {

(*buff _tenp_counter) ++

}

/1 advance to pass ending
(*buff _tenp_counter) ++;

/1l conpare tag value with current selection paraneter
/1 if valid save val ue and advance counter

tenp_str =
strncpy(tenp_str, &uff _tenp[*buff_tenp_counter], sys_para_val ue_si ze);
tenp_str[sys_para_val ue_size]="\0'

if (strncnp(&buff_tenp[*buff_tenp_counter], sys_para_val ue,
sys_para_val ue_si ze) == 0) {

LOG DBG ((LOG _PCLICY, 40, "Paraneter value MATCH',""));

tenp_hold = strncpy(tenp_hol d, &uff _tenp[*buff_tenp_counter],
224

sys_para_val ue_si ze);
tenp_hol d[sys_para_val ue_si ze] ="'\ 0’
/lset flag to true
success = 1;
/1 advance buffer counter to end of tag val ue
(*buff _tenp_counter)= (*buff_tenp_counter) +
sys_para_val ue_si ze;
/'l make tenp_hold all UPPER_CASE
tenp_hol d= convert _to_uppercase(tenp_hol d);

}

el se {
success = 0;

} // end el se

return (success);

/***

- Function: advance_to_end DNF()- advances file pointer to the next DNF
security proposal

- I nput:
- char *buff_tenmp — string buffer used for KeyNote
file.

- int *buff_tenp_counter - index of pointer in buff_tenp string

buffer.

- int buff_tenp_end - index of end-of-file (ECF) in buff_tenp.

- Qut put:
- int *buff _tenp_counter - index of pointer in buff_tenp string
buf fer.

***/

voi d advance_to_end _DNF(char *buff _tenp, int *buff _tenp_counter, int
buff _tenp_end) {
/1 advance buffer to end of expression

while ((*buff_tenp_counter <= buff_tenp_end) &&
225

(buff_tenp[*buff_tenp_counter] '="|")) {

(*buff _tenp_counter) ++

}

/***

Functi on: voi d par se_i psec_par amet er (char *puff _tenp, i nt *
buff _tenp_counter, char * sys para_name, char ** tenp_hold, int *
success) — verifies that the tag is the expected tag and then parses

the tag and the tag value, storing information in input suite structure
char string.

- Inputs:

- char *buff_tenp — pointer to the file being parsed.

- int *buff_tenp_counter — pointer to index of character in file being
par sed.

- char * sys _para_nane — pointer to the expected paraneter tag nane

- char ** tenp_hold - pointer to a pointer (used for the purpose of

dynam ¢ nenory allocation) of char string in suite structure.
- int *success — pointer to an integer used for the success flag.

- Qut put s:
- int *buff _tenp_counter — pointer to index of character in file being
parsed is returned via pointer reference. Pointer nmay be advance in
function.
- char * tenp_hold - pointer to a pointer of a character string (used
for the purpose of dynamic nenory allocation) in the suite structure
returned via pointer reference.
- int *success — pointer to an integer used to hold success flag
returned via reference.

***/

voi d parse_i psec_paraneter(char *buff_tenp, int * buff_tenp_counter
char * sys para_nane, char ** tenp_hold, int * success) {

int tenmp_counter, tenp_buffer

int sys_para_nane_size = strlen(sys_para_nane);
int sys_para_val ue_size = 0;

char * tenp_string

tenmp_string = (char *) mall oc(100);

/1 CHECKI NG FOR TAG LABEL MATCH

if (strncnp (&buff_tenp[*buff_tenp_counter], sys_para_nane,
sys_para_nanme_size) == 0) {

LOG DBG ((LOG POLI CY, 40, "Match Found... copying | abel info",""));

226

*pbuff _tenp_counter+= sys_para_nanme_si ze;

/1 ADVANCE TO THE START OF PARATHESI SES
whil e (buff_tenp[*buff_tenp_counter] = """) {

sys_para_val ue_si ze++;
(*buff _tenp_counter) ++;

/1l advance passed openni ng
(*buff _tenp_counter) ++;
/] COUNT THE SI ZE OF TAG VALUE - UNTIL CLOSE "

tenp_counter = O;
temp_buffer = *buff_tenp_counter

while (buff_tenp[tenmp_buffer] !=""") {

tenp_buffer++
t enp_count er ++;

/1 COPYI NG TAG VALUE

/1l creating dynam c nmenory space for variabl e storage

(*tenmp_hold) = (char*)nmalloc(tenp_counter+1);

*tenp_hold = strncpy(*tenp_hol d, &buff_ tenp[*buff_tenp_counter],
tenp_counter);

(*tenp_hold)[tenp_counter]="\0";

(*buff _tenp_counter)= tenp_buffer + 1

*success=1; // set success flag to true

/1 meke tenp_hold all UPPER_CASE

*tenp_hold = convert_to_uppercase(*tenp_hol d);

}

el se {
LOG DBG ((LOG PCLICY, 40, "Match Not Found...",""));

}

227

/**

- Function: void parse_ipsec_para_tag()- verifies that the tag is the
expected tag and that tag value contains “yes”. |f so, parses tag and
stores its value in suite structure char string.

- I nputs:

- char *buff_tenp — pointer to the file being parsed.

- int *buff_tenp_counter — pointer to index of character in file being
par sed.

- char * sys para_nane — pointer to the expected paraneter tag nane

- char ** tenp_hold - pointer to a pointer (used for the purpose of
dynam ¢ nmenmory all ocation) of char string in suite structure.

- int sys_para_name_reduced — integer that holds the string size of the

tag. Either 2 or 3 used for AH, ESP or PFS tags.
- int *success — pointer to an integer used for the success flag.

-Qut put s:
- int *buff_tenp_counter — pointer to the index of character in file
being parsed is returned via pointer reference. Pointer nmay be advanced
in the function.
- char * tenp_hold - pointer to a pointer of a character string (used
for the purpose of dynamic nenory allocation) in the suite structure
returned via pointer reference.
- int *success — pointer to an integer used for the success flag
returned via reference.

**/

voi d parse_ipsec_para_tag(char *buff_tenp, int * buff_tenp_counter
char * sys _para_nane, char ** tenp_hold, int sys_para_name_reduced, int
* success) {

//int tenmp_counter
int tenp_buffer

int sys_para_nane_size = strlen(sys_para_nane);
/lint sys_para_val ue_size = 0;

char * bool _tag = "yes";

i nt bool _tag size = 3;

char * tenp_string

tenp_string = (char*) malloc (100);

/1 CHECKI NG FOR TAG LABEL MATCH
if (strncnp (&buff_tenp[*buff_tenp_counter], sys_para_nane,
sys_para_nanme_size) == 0) {

*puff _tenp_counter+= sys_para_nane_si ze

tenmp_buffer = *buff_tenp_counter

228

/1 ADVANCE TO THE START OF PARATHESI SES
while (buff_temp[tenp_buffer] !=""") {
tenp_buffer++

}

/1 advance passed openning "
t enp_buf f er ++;
/'l Check to see if boo_tag equals "YES"

if (strncnp (&buff_tenp[tenp_buffer], bool tag, bool tag size)
== O){

*buff _tenp_counter = tenp_buffer;
t enmp_hol d=(char) mal | oc(sys_para_nanme_r educed+1);

*tenp_hold = strncpy(*tenp_hold, sys_para_nane,
sys_para_nane_reduced);

(*tenp_hol d)[sys_para_nane_reduced] ="'\ 0'
(*buff _tenp_counter)+= bool _tag_size;
*success = 1; // set success flag to true
/1 make tenp_hold all UPPER_CASE

*t enp_hol d=convert _to_uppercase(*tenp_hol d);

}
el se {
LOG DBG ((LOG_PQLICY, 40, "Tag bool match not found...",""));

}
}
el se {

LOG DBG ((LOG PCLICY, 40, "Tag Nane no match....",""));

}

[In the function conf_reinit() the following line of code is added]

con_kn_parse(trans);

229

THISPAGE INTENTIONALLY LEFT BLANK

230

APPENDIX B. IKE_QUICK_MODE.C

The following is the code added to /usr/src/shin/isakmpd/ike_quick_mode.c:

/**

*

Structure: dynani c_packet

This structure is used to stored dynani c paraneter
data, including dynanic paraneter nane, assignnment synbo
and val ue.

* X X X X

*

R Rk S S IR R R O O R S R R O R S

struct dynam c_packet {

char* title;
char* synbol ;
char* val ue

b

struct dynam c_packet* package_dynam c_paraneters(int *);
struct dynam c_packet * package_dynani c_paraneters2(int *);

/**

*

* Function: package_dynam c_paranmeters()This function reads a file that
* contains the current inputs of dynam c paraneters such as

* Net wor k Mbde and Security Level. Initializes an array of

* structures that will dynamically grow as required. Loads the
* file input into the array of struct.

*

* - I nput:

* - int * package_counter - used to determ ne the size of the
* struct array

*

*

* - Qut put:

* - struct dynanm c_packet * - pointer to an array of

* dynam c_packet structure

*

*

**/

struct dynam c_packet * package_dynam c_paraneters(int
*package_counter) {
int array_size = 10 ; // chosen as average case for struct size
struct dynam c_packet * package; [/ pointer to array of struct

/1l strings used to read fromfile

231

char * title
char * synbo
char * val ue

(char*)mal | oc(20);
(char*)mal | oc(20);
(char*) mal | oc(20);

/1 used for file IO

FILE * pifp;

int file_status=0;

(*package_counter) = 0; // initialize the array size to zero

[l initialize the pointer to an array size of array_size

package = (struct dynam c_packet *)mall oc(sizeof (struct
dynam c_packet) *array_si ze);

/1 open file to read in dynam c paraneters
/1 check for errors in openning the file

if ((pifp = fopen("/usr/src/shin/isaknpd/ dynani c_paraneters”
"r"))== NULL) {
/1 error openning the file

LOG DBG ((LOG_POLICY, 40, "ERROR OPENNI NG FILE %", errno)):

}

else { [// file was successfully openned
/1 do-while loop to read in data until EOF reached
do {

/1l read in fromthe file expecting the follow ng syntax:
/1 title synbol value

file_status = fscanf(pifp, "%%%", title, synbol, value);
LOG DBG ((LOG POLI CY, 40, "Just read fromfile....",""));
LOG DBG ((LOG POLICY, 40, "Title: % Synbol: % Value: %",
title, synmbol, value));
/1 check for reading errors..
if (file_status == 0) {
/1 reading error occurred
LOG DBG ((LOG POLI CY, 40, "error reading fromthe

file....",""));
}

/1 check for ECF...
else if (file_status == EOF) {
!/l ECF reached

LOG DBG ((LOG POLICY, 40, "end of file....",""));
232

}

/1 otherwi se... read operation successfu
el se {

/1l create new struct space for dynanic paraneters and
/1 assign values fromfile to struct

package[(*package_counter)].title = strdup(title);
package[(*package_counter)].synbol = strdup(synbol);
package[(*package_counter)].val ue = strdup(val ue);

/1l increnment package counter array of struct
(*package_counter) ++

/1 dynamic resize array if nore nmenmory is required
if ((*package_counter) == array_size) {
array_size+=10; // grow array in increnments of 10

package = (struct dynam c_packet
*)real | oc(package, si zeof (struct dynam c_packet)*array_si ze);

}
}

}
while ((file_status !'= 0) && (file_status !=EOF));
fclose(pifp); // close file
test _print_dynam c_packet (package, *package_counter);
}
/1 free nmenory
free(title);
free(symbol);
free(val ue);

/1 free(pifp);

return (package);

[In the check_policy() function the following lines of code are added
to read int dynamic paranmeters and then load themin the KeyNote query
mechani smi

package = package_dynani c_par anmet ers2(&package_si ze) ;

/'l | oad Dynanic paranmeters into KeyNote

for (c= 0; c < package_size;c++) {

233

if (LK (kn_add_action, (isaknp_sa->policy_id,

package[c].title, package[c].value,0)) == -1)
{
log _print ("CHECK POLICY: "
"kn_add_action | oading FAILED for title: % value: %",
package[c].title, package[c]. val ue);
LK (kn_cl ose, (isaknp_sa->policy_id));
i saknmp_sa->policy_id = -1;
return O,
}
el se {

LOG DBG ((LOG _POLICY, 40, "CHECK POLICY: |oad successful for
title: % value: %", package[c].title, package[c].value));

234

APPENDIX C. DEMO.JAVA

/***

Cl ass denp.java - This class creates and handl es the generation of the
wel come screen and nenu choi ces.

***/

i mport javax.sw ng. *;

i mport java.awt.*;

i nport java.awt. Tool ki t;

i nport kaffe.aw.*;

i mport java.awt.event.*;

i mport java.io.*;

i mport java.util.x*;

i mport dp_consol e;

i nport deno_support _functions;
i mport ipsecinfo;

public class denp extends JFrane {
private SPD spd;
private JPanel p, ptitle, pchoices;
private JButton enter;
Col or bg_color = Color.white;

private JRadioButton sp_choice, dp_choice, ep_choice, ds_choice,
b2 choi ce, b3 _choice, b4 _choice, ex_choice;

private JButton sp_button, dp_button, ep_button, ds_button,
b2 button, b3_button, b4 _button, ex_button

private JLabel qoss_menu, status_| abel

private dp_console dp

private ipsecinfo ip;

private tcpdunp tcp

private SPFK spfk;

private static Runtinme rt;

private demp_support_functions dsf;
/'l private Thread file_copy fc;

private | mge i;

/**
Met hod: demb - class constructor - constructor — initializes the
wel cone screen.

**/

public denmo() {

super (" QoSS | Psec");
dsf = new deno_support_functions();
dp = new dp_consol e();

dp. addW ndowLi st ener (
235

new W ndowAdapter () {
public void w ndowCl osi ng(W ndowEvent e)

{

System exit(0);

}
)

p = new JPanel ();

pchoi ces = new JPanel () ;

set Cont ent Pane(p) ;

p. set Background(bg _col or);
p.repaint();

pchoi ces. set Background(bg_col or);
pchoi ces. repaint ();

p. set Layout (new Fl owLayout ());
enter = new JButton("Continue");
Cont i nueBut t onHandl er ct _handl er = new

Cont i nueBut t onHandl er () ;

Chris Agar,

Menu") ;

ent er. addActi onLi st ener (ct _handl er);

JLabel | abel;

p. add(| abel = new JLabel (" OpenBSD "));

| abel . set For egr ound(Col or. bl ack) ;

| abel . set Font (new Font (" Serif", Font.BCOLD, 20));
p. add(| abel = new JLabel ("I Psec "));

| abel . set For egr ound(Col or. bl ue);

| abel . set Font (new Font (" Serif", Font.BOLD, 50));

p. add(| abel = new JLabel ("Dynam ¢ Paraneterization"));
| abel . set For eground(Col or. red);

| abel . set Font (new Font (" Serif", Font.| TALIC, 40));
p.add(l abel = new JLabel (" by
LT USN "));

| abel . set For egr ound(Col or. bl ack) ;

| abel . set Font (new Font ("Serif", Font.BOLD, 15));

p. add(enter);

p.repaint();

set Si ze(500, 175) ;

set Vi si bl e(true);

status_| abel = new JLabel ("");

goss_nenu = new JLabel ("QoSS | Psec Denonstration Selection
sp_button = new JButton("Start |Psec");

dp_button = new JButton("Dynam ¢ Paraneterization");
ep_button = new JButton("Stop | Psec");

ds_button = new JButton("Display SAD");

b2 _button = new JButton("Di splay TCPDUWP");

b3_button = new JButton("Di splay SPD");

b4 _button = new JButton("Display Security Policy");

236

ex_button = new JButton("Exit");

SPBut t onHandl er spb_handl er
DPBut t onHandl er dpb_handl er new DPButt onHandl er () ;
DSBut t onHandl er dsb_handl er new DSButtonHandl er () ;
EXBut t onHandl er exb_handl er = new EXButtonHandl er();
TCPBut t onHandl er tcpb_handl er new TCPButtonHandl er();
SPDBut t onHandl er spdb_handl er new SPDButtonHandl er () ;
DSPBut t onHandl er dspb_handl er new DSPButtonHandl er () ;
| NFBut t onHandl er i nfb_handl er new | NFButt onHandl er () ;

new SPButt onHandl er () ;

sp_but ton. addAct i onLi st ener (spb_handl er);
dp_button. addActi onLi st ener (dpb_handl er);
ex_button. addActi onLi st ener (exb_handl er);
ds_but ton. addActi onLi st ener (dsb_handl er);
b2 button. addActi onLi stener(tcpb_handl er);
b3 _button. addActi onLi st ener (spdb_handl er);
b4 _button. addActi onLi st ener (dspb_handl er);
ep_but ton. addAct i onLi st ener (i nf b_handl er);

/1 initialize connection_index
initialize_connection_index _file();

show() ;
/**
Method: initialize_connection_index_file() - resets connection index

counter to zero in the connection index counter file.
- I nput: none.
- Qutput: none.

**/

public void initialize_connection_index_file() {

try {
int temp_string = O;
Systemout.println("Witing connection# to the file.");
File f = new File("/root/deno/connecti on_nunber");
Fil eQut put Stream fos = new Fil eQut put Strean(f);
PrintStream out = new PrintStrean(fos);

out.println("0");

fos.close();
out.close();

}

catch (Exception e) {

System out. println("Execption Thrown in Wite_ CF e: +e);

237

}

/**

Met hod: reset_error_panel () - refreshes error panel and renoves old
nessage.

- I nput: none.
- Qutput: none.

**/

public void reset_error_panel () {

status_| abel . set Text(" ");

/**

Met hod: load_dp _file(String nm String sl) - accepts network nmode and
security level inputs and wites theminto the dynanic parameter file.

-l nput :
- String nm network node val ue.
- String sl — security |level value.

- Qutput: none.
**/
public void load _dp _file(String nm String sl) {

try {
File f = new File("/usr/src/sbin/isaknmpd/ dynan c_paranmeters");

Fil eQut put Stream fos = new Fil eQut put Strean(f);
PrintStream out = new PrintStrean(fos);

out.println("network_mpde =" + nmt "\n");
out.println("security_|evel "+ sl + "\n");

fos.close();
out.close();

}
catch (Exception e) {

Systemout. println("Execption Thrown in Wite DP e: " +e);
}

}

/**

Cl ass: ContinueButtonHandl er inplenments ActionListener

- Method: actionPerformed(ActionEvent e) - action handler for the
conti nue button on the wel cone JFrane.

**/

238

private class ContinueButtonHandl er inplenments ActionListener {

public void actionPerformed(Acti onEvent e)

{
try{

Systemout. println("Continue Button Sel ected");
p.removeAl | ();

p. set Layout (new Fl owLayout ());

p. add(goss_nenu) ;

p. add(status_| abel);

pchoi ces. set Layout (new Gri dLayout (4, 2));
pchoi ces. add(sp_button);

pchoi ces. add(ds_button);

pchoi ces. add(dp_button);

pchoi ces. add(ep_button);

pchoi ces. add(b2_button);
pchoi ces. add(b3_button);
pchoi ces. add(b4_button);
pchoi ces. add(ex_button);
p. add(pchoi ces) ;

set Si ze(450, 150);
set Vi si bl e(true);

catch (Exception s) {
Systemout.println("Exception thrown in Continue Button

Handl er.");
System out. println("Exception: "+s);
}
}
}

/***

Cl ass: SPRadi oBut t onHandl er inpl enents ItenListener

- Method: itenttateChanged(ltenEvent e) — action handler for the start
| Psec radi o button.

***/
/l Start |Psec Process

private class SPButtonHandl er inplements ActionListener {
239

public void actionPerfornmed(Acti onEvent e)

{
reset _error_panel ();
Systemout.println("Start |Psec choice was selected.");
/1 check to see if process is running
i f (dsf.daenon_running()) {
status_| abel . set Text ("1 Psec is already running!");
}
el se { /1 ipsec is not running
/1 load default security l|level and network node into
dp file
| oad_dp_file("default","default");
initialize_connection_index_file();
/1 Flushing i psec mechani sm
dsf.flush_ipsec();
/1 Mount kerne
dsf. mount _kern();
/1 LCad SPD
dsf.load_spd();
/lstart ipsec mechani sm
dsf.start _ipsec();
}
}

}

/***

Cl ass: DSRadi oButtonHandl er inplenments ItenlListener

- Method: itenttateChanged(ltenEvent e) - action handler for Display
SAD radi o button.

***/
private class DSButtonHandl er inplenments ActionListener {

public void actionPerformed(Acti onEvent e)

{
reset _error_panel ();
System out. printl n("Display Negot i at ed SA' s was
sel ected.");
ip = new ipsecinfo();
ip.start();

240

}

/**

Cl ass: | NFButtonHandl er inplenents Itemnmlistener— item|listener for stop
i psec button.

- Method: actionPerformed(ActionEvent e) — action handler for Exit
menu.

**/

private class | NFButtonHandl er inplenents ActionListener {

public void actionPerformed (Acti onEvent e)

{

reset _error_panel ();
Systemout.println("Stop | Psec choice was selected.");

i f (dsf.daenon_running()) {
Systemout.println("IPsec is running....");

dsf.tear_down_connection();
dsf.stop_ipsec();

}

el se Systemout.println("IPsec is not running....");

}

/**

Cl ass: TCPButtonHandl er inplenments ActionLi stener

- Method: actionPerfornmed(ActionEvent e) — action handler for Display
t cpdunp button.

**/

private class TCPButtonHandl er inplenents ActionListener {

public void actionPerfornmed(Acti onEvent e)

{
reset _error_panel ();
Systemout.println("TCP Dunp start....");
tcp = new tcpdunmp();
tcp.start();
}

241

/**

Cl ass: SPDButt onHandl er inplenents ActionLi stener

- Method: actionPerfornmed(ActionEvent e) — action handler for Display
SPD button.

***/

private class SPDButtonHandl er inplenents ActionListener {

public void actionPerfornmed(Acti onEvent e)

{
reset _error_panel ();
Systemout.println("Display SPD");
spd = new SPD();
}

/***

Cl ass: DSPButt onHandl er inplenments ActionLi stener

- Method: actionPerfornmed(ActionEvent e) — action handler for Display
Security Policy button.

***/

private class DSPButtonHandl er inplenents ActionListener {

public void actionPerfornmed(Acti onEvent e)

{
reset _error_panel ();
Systemout.println("Display Security Policy");
spfk = new SPFK();
}

/**

Cl ass: EXButtonHandl er inplenents ActionListener— action handler for
Exit button.

- Method: actionPerformed(ActionEvent e) — action handler for Exit
menu.

242

**/

private class EXButtonHandl er inplements ActionListener {

public void actionPerfornmed(Acti onEvent e)

{
reset _error_panel ();
Systemout.printin("Exit |Psec choice was selected.");
if (dsf.daemon_running()) {
Systemout.println("IPsec is running....");
dsf.tear_down_connection();
dsf.stop_ipsec();
}
System exit(0);
}

/**

Cl ass: DPButtonHandl er inplenents ActionListener

- Method: actionPerforned(ActionEvent e) - action handler for Dynamc
Par anmet eri zati on button.

**/

private class DPButtonHandl er inplenents ActionListener {

public void actionPerfornmed(Acti onEvent e)

{

reset _error_panel ();
/1 dp_choi ce. set Sel ect ed(f al se);
Systemout.println("Dynam c Parameter selection choice was
selected.");
dp.start_dp_consol e();
}

/***

Met hod: static main(String args) — the main program of the denop cl ass.

***/

public static void nmain (String args[])

{

demo d = new demp();
rt = Runtime.getRuntine();

243

d. addW ndowLi st ener (
new W ndowAdapter () {
public void wi ndowCl osi ng(W ndowEvent e)

{

System exit(0);

244

APPENDIX D. SPD.JAVA

/***

Class SPD.java - This <class <creates and handles the
generation of the Security Policy Database.

***/

/1 SPD.java

i mport javax.sw ng. *;

i mport javax.sw ng. border. Border;

i mport javax.sw ng. border. Titl edBorder;

i mport javax.sw ng.text. Docunent;

i mport javax.sw ng.text.BadLocati onExcepti on;
i mport java.awt . Cont ai ner;

i rport java.awt . Di mensi on;

i mport java.awt. Rectangl e;

i nport java.awt . Col or;

i mport java.awt. Font;

i mport java.awt.Fl owLayout;

i mport java.awt. Tool kit;

i mport java.awt.event.*;

i mport java.awt.*;

i mport java.util.NoSuchEl ement Excepti on;
i mport java.util.StringTokenizer;
[linport java.net.?*;

i nport java.io.*;

public class SPD {
JSepar at or separator;
deno_support_functions dsf;
private static Runtinme rt;
| nput Stream i n;
Process p;
Fi | el nput Stream fin;
JPanel content Pane;
JPanel panel, tool bar;
JPanel [] subpanel 1, subpanel 2, subpanel 3;
JButton exitButton;
JTextField []sourcel P;
JText Field []sourcePort;
JTextField []destl]P;
JTextField []destPort;
JTextField []protocol;
JTextField []sa;
JFranme j;

/**

Met hod: SPD - class constructor - constructor — initializes the
SPD JFr ane.

**/

245

public SPD() {
j = new JFrame("Security Policy Database");

j . addW ndowLi st ener (new W ndowAdapter () {
public void w ndowCl osi ng(W ndowEvent e) {
doExit ();
}

1)

rt = Runtime.getRuntine();
dsf = new deno_support_functions();

/1 build GU

cont ent Pane = new JPanel (new Border Layout());
panel = new JPanel (new Gri dLayout (0,1));

subpanel 1 = new JPanel [12];
subpanel 2 = new JPanel [12];
subpanel 3 = new JPanel [12];
sourcel P = new JTextFiel d[12];
sourcePort = new JTextField[12];
dest| P = new JTextFiel d[12];
dest Port = new JTextFi el d[12];
protocol = new JTextField[12];
sa = new JTextField[12];

t ool bar = new JPanel ();

for (int c=0;c<11;c++) {

/'l source IP

subpanel 1{c] = new JPanel (new Gri dLayout(1,4));

/I panel . add(subpanel [0]);

subpanel 1[c] . add(new JLabel (" Source |P: ")) ;

subpanel 1 c] . add(sour cel P[c] = new JTextField("DATA NOT
AVAI LABLE")) ;

sourcel P[c]. set Edi t abl e(fal se);

/'l source port
subpanel 1[c] . add(new JLabel (" Source Port: ")) ;

subpanel 1[c] . add(sourcePort[c] = new JTextFiel d(4));
sourcePort[c].setEditabl e(fal se);

/1 dest IP
subpanel 2[c] = new JPanel (new GridLayout(1,4));
subpanel 2[c] . add(new JLabel ("Destination |P: "));

subpanel 2[c] . add(destI P[c] = new JTextFi el d(20));
dest| P[c] . set Edi t abl e(fal se);

/1 dest port

subpanel 2[c] . add(new JLabel ("Destination Port: ")) ;
subpanel 2[c] . add(dest Port[c] = new JTextFiel d(4));
dest Port[c].set Editabl e(fal se);

246

/1l protoco

subpanel 3[c] = new JPanel (new GridLayout(1,4));
subpanel 3[c] . add(new JLabel (" Protocol : "));
subpanel 3[c]. add(protocol [c] = new JTextField(4));
protocol [c].setEditabl e(fal se);

/1 SA

subpanel 3[c] . add(new JLabel (" SA(Addr/ Proto/ Type/Dir):"));
subpanel 3[c] . add(sa[c] = new JTextFi el d(20));
sa[c].set Edi tabl e(fal se);

/'l separator
separator = new JSepar at or (Swi ngConst ant s. HORI ZONTAL) ;

/1l panel for exit button

t ool bar. add(exitButton = new JButton("Exit"));
exitButton. set Tool Ti pText ("Exit Security Policy Database");
exi t Button. set Mhemonic ('x');
exi t Butt on. addActi onLi st ener (new Acti onLi stener() {
public void actionPerformed(Acti onEvent e) {
doExit();
}

1)

cont ent Pane. add(panel , Border Layout. NORTH) ;
cont ent Pane. add(t ool bar, BorderLayout. SOUTH);
j . set Cont ent Pane(cont ent Pane) ;

panel . set Vi si bl e(true);

t ool bar. set Vi si bl e(true);

/1 now fill in actual values

set Text Fi el ds();
}
T e e
[l exit
I e R R R
void doExit() {

j . di spose();

}

/***

Met hod: String create_SPD input() — this nethod retrieves
the SPD data, stores it in a string and returns it to the
cal ling function.

- I nput: none.
- Qut put:
- String — contains the retrieved SPD dat a.

***/

String create_SPD_input() ({
247

String SPD_s = new String();

try {

String[] s = new String[3];

s[0] = new String("/bin/sh");

s[1] new String("-c");

s[2] new String("netstat -rn -f encap");

p=rt.exec(s);

p. wait For () ;

in = p.getlnputStream);

Systemout.println("buffer size: "+in.available());
byte[] buffer = new byte[in.available()];
in.read(buffer);

SPD s = new String(buffer);

Systemout.println("spd buffer: \n"+SPD_s);

catch (Exception e) {
System out. println("Exception thrown in create spd input
" +e) ;

}

return (SPD_s);
}

/**

Met hod: setTextFields() - this nethod parses the input
string and displays the SPD data in the JFrane.

- Il nput: none.

- Qutput: none

**/

voi d setTextFields() {
String s = create_SPD i nput ();
int field counter = -1;

StringTokeni zer st = new StringTokeni zer(s);

try {
if (st.hasMoreTokens()) {

Systemout.println("SPD data...");
[l skip initial tokens
for (int i=0; i<9; i++) {
Systemout.println("next spd token: "+st.nextToken());
}

/] set text fields

/'l Check for no entries in table
if (st.hasMreTokens()) {
/I panel . renmoveAl | ();

248

whil e (st.hasMreTokens()) {
field counter= field_counter +1

String tenps = st.nextToken();
Systemout.println("next spd token: "+tenps);
sourcel P[field_counter].setText(tenps);

tenmps = st.next Token();

Systemout. println("next spd token: "+tenps);
sourcePort[field_counter].setText(tenps);
panel . add(subpanel 1[fi el d_counter]);

subpanel 1[fi el d_counter].setVisible(true);

tenmps = st.next Token();
Systemout.println("next spd token: "+tenps);
dest| P[field_counter].setText(tenps);

tenmps = st. next Token();
System out. println("next spd token: "+tenps);
destPort[field_counter].setText(tenps);

panel . add(subpanel 2[fi el d_counter]);

subpanel 2[fi el d _counter].setVisible(true);

tenmps = st.next Token();
System out. println("next spd token: "+tenps);
protocol [field _counter].setText(tenps);

tenmps = st. next Token();
System out. println("next spd token: "+tenps);
sa[field_counter].setText (tenps);

panel . add(subpanel 3[field_counter]);

subpanel 3[field_counter].setVisible(true);

panel . add(new
JSepar at or (Swi ngConst ant s. HORI ZONTAL)) ;

}

}
else { [/ enpty table

panel . add(new JLabel ("No Entries Exist in the SPD"));
}

}
el se {

Systemout.println("Enpty String...no tokens to parse.");
}

} catch (NoSuchEl enent Exception e) {
Systemout.println("SPD tokenizer error in string <"
+ s + ">\n" + €);

j-pack();
j .setVisible(true);

249

250

APPENDIX E. DEMO_SUPPORT_FUNCTIONSJAVA

/***

Class: demo_support_functions— contains support functions for other classes.

***/

i mport javax.sw ng. *;

i mport java.awt.*;

i mport java.awt.event.*;
i mport java.io.*;

i mport java.util.*;

public class deno_support_functions {

private static Runtinme rt;
private int connection_count
private int connection_index
private Process p;

private InputStreamin;

/***

Met hod: deno_support _functions constructor.

***/

public denpo_support_functions() {

try {
connection_count =0;

connecti on_i ndex=0;
rt = Runtinme.getRuntine();

catch (Exception e) {

Systemout.println("Exception thrown in dsf constrcutor
" +e);

/***

Met hod: flush_ipsec() — generates the run tinme commands to
flush the I Psec nechani sm

251

- |l nput: none.

- Qut put: none.

***/

public void flush_ipsec() {

try {

Systemout. println("perform ng i psecadm flush...");
String[] s = new String[3];

s[0] = new String("/bin/sh");

s[1] = new String("-c");

s[2] = new String("i psecadm flush");
rt.exec(s).waitFor();

}
catch (Exception e) {

System out. println("Excpetion thrown in flush_ipsec : "+e);
}

}

/***

Met hod: 1oad_spd() — generates the run tine commands to

| oad SPD with the security policy.

- I nput: none.

- Qutput: none.

***/

public void | oad_spd() {

try {
Systemout.println("perform ng sh vpn28_ah_a - | oading SPD

with defaults");
String[] s2 = new String[3];
s2[0] = new String("/bin/sh");
s2[1] = new String("-c");
s2[2] = new String("sh /root/vpn28_ah_a");
rt.exec(s2);

catch (Exception e) {
Systemout.println("Excpetion thrown in |oad_spd

+e);

252

/***

Met hod: mount _kern() - generates the run tinme commands to

mount t he kernel.

- |l nput: none.

- Qut put: none.

***/

public void munt _kern() {

try {
System out. println("Munting Kern");

String[] s3 = new String[3];

s3[0] = new String("/bin/sh");

s3[1] = new String("-c");

s3[2] = new String("sh /root/nount_kern");
rt.exec(s3);

}

catch (Exception e) {
System out. println("Excpetion thrown in munt_kern :
}

+e);

/***

Met hod: start_ipsec() — generates the run time conmmands to

start the i psec mechani sm

- I nput: none.

- Qut put: none.
***/

public void start_ipsec() {

try {
Systemout. println("Executing isaknpd/ipsec");

String[] s3 = new String[3];
s3[0] = new String("/bin/sh");
s3[1] = new String("-c");
s3[2] = new String("isaknpd");
rt.exec(s3).waitFor();

253

}

catch (Exception e) {
System out. println("Excpetion thrown in start_ipsec :
}

+e);

/***

Met hod: stop_ipsec() — generates the run tinme commands to
stop the I Psec nechani sm
- I nput: none.

- Qutput: none.

***/

public void stop_ipsec() {

try {
Systemout.println("Stopping |Psec...");
File f = new File("/var/run/isaknpd. pi d");
if (f.exists()) {
FilelnputStreamfis = new Fil el nput Streanm(f);
byte[] buffer = new byte[fis.available()];
fis.read(buffer);
String tenpString = new String();
String kill _value = new String(buffer);
Systemout.printIn("Killing the ipsec process id: " +
kill _val ue);
String[] s3 = new String[3];
s3[0] = new String("/bin/sh");

s3[1] new String("-c");
s3[2] new String("kill

+ kill_val ue);
rt.exec(s3).waitFor();

fis.close();

}

catch (Exception e) {
Systemout.println("Excpetion thrown in stop_ipsec :

+e);

}

254

/***

Met hod read_connection_index_file()— reads in the current
val ue of the index counter froma file.

- |l nput: none.

- Qut put: none.

***/

public void read _connection_index _file() {
System out. println("Readi ng connection file");
int test =5;
try {
File f = new File ("connection_nunber");

FilelnputStream fis = new Fil el nput Strean(f);
int size = fis.available();

byte[] buffer = new byte[size];
String ts = new String();
fis.read(buffer);

String tenpString = new String(buffer);
StringTokeni zer st = new StringTokeni zer(tenpString);
whil e (st.hasMreTokens()) {
try {
ts = st.next Token();
Systemout.printin("ts token:"+ts+":");
connection_index = Integer.parselnt(ts);
Systemout.println("ci:"+connection_index);

}
catch (Exception ef) {Systemout.println("error dude:
"+ef):}
}
fis.close();
}

catch (Exception e) { Systemout.println("Exception Thrown in
read_connection file: "+e + "connection: "+test);}

}

/***

255

Met hod: write_connection_index _file()— wites the current
val ue of the index counter to a file.
- Il nput: none.

- Qutput: none.

***/

public void wite_connection_index_file() {
try {
Systemout.println("Witing connection# to the file.");
File f = new File("/root/deno/ connecti on_nunber");
Fi | eQut put Streanm("/root/denmo/ connecti on_nunber");
Fil eQut put Stream fos = new Fil eQut put Strean(f);
PrintStream out = new PrintStrean(fos);
out. println(connection_index);

fos.cl ose();
out.close();

}

catch (Exception e) {

Systemout. println("Execption Thrown in Wite CF e: " +e);

/***

Met hod: daenon_running() - checks to see if the |[|Psec
process is currently running.

- lnput: none.

- Qut put:

- Boolean result — true if IPsec is currently running
and fal se otherw se.

***/

publ i c bool ean daenon_runni ng() {

bool ean result = fal se;
try {

Systemout.println ("Testing to see if daenmon is running...");

256

String[] s = new String[3];
s[0] = new String("/bin/sh");
s[1] = new String("-c");
s[2] = new String("ps -ax | grep isaknpd | grep -v grep >
daenon_search");
rt.exec(s).waitFor();
File f = new Fil e("daenon_search");
if (f.exists()) {
Systemout.println("File daenon_search exists..");}
else { Systemout.println("file daenmon_search does not exist!");}
long test = f.length();
FilelnputStreamin = new Fil el nput Strean(f);
int size_before = in.available();
byte[] buffer = new byte[size_before];

in.read(buffer);
String tenpString = new String();

String record = new String(buffer);
in.close();

if (size_before > 0) {
System out. println("daenon is running.");
/'l wite to file to stop daenon...

result = true;

}

el se {
System out.println("daenon is not running.");
result = fal se

}

}

catch (Exception e) {
Systemout. println("Exception Throw i s_daenon_runni ng:

+e);

}

return (result);

}

/***

Met hod: pause() — sleeps for a given nunmber of seconds.
- Input:

int — nunber of seconds.

257

- Qutput: void

***/

public void pause(int t) {
try {

| ong pauseTinme = (long) (t*1000);
Thr ead. sl eep(pauseTi ne) ;

}

catch (Exception etp) {
Systemout.print("Run Error: " + etp);

}

}

/***

Met hod: stop_tcpdunp() — term nates tcpdunp process.

- Input: void
- Qutput: void

***/

public void stop_tcpdunp() {
bool ean not Done = true;
whi l e (notDone) {

try {
Systemout.println("in stop tcp_dunp");
String[] s = new String[3];
s[0] = new String("/bin/sh");
s[1] new String("-c");
s[2] new String("ps -ax | grep tcpdunp | grep -v grep
grep -v /bin/sh");
p = rt.exec(s);

p. wai t For () ;
in = p.getlnputStream);

Systemout.printin("perforned rt.");

catch (Exception e) {
Systemout. println("Exception thrown in stop_tcp_dunp"+e);

String line = null

try {

Buf f er edReader br = new Buf f er edReader (new
I nput St r eanReader (i n));

258

line = br.readLine();

if (line !'=null) {
Systemout.println("tcpdunp found running... process output
#:. "+line);
pause(3);

String s = new String(line);

StringTokeni zer st = new StringTokeni zer(s);
String kill _value = st.nextToken();

String[] s3 = new String[3];

s3[0] = new String("/bin/sh");

s3[1] new String("-c");
s3[2] new String("kill " + kill _value);

rt.exec(s3).waitFor();

Systemout.printIn("Killing t he fol l owi ng process:
"+kill _val ue);
}
el se {
Systemout.println("tcpdunp i s not running");
not Done = fal se;
}

catch (Exception e){
Systemout.printin("Error throwm while trying to read tcpdunp
kill process id");
not Done = fal se;
}

}
}

/***

Met hod: read file() — reads in data fromthe input file.
- I nput:
String — file nane.
- Qut put:
String — data fromthe file.

***/

public String read file(String file_nane) {
String s = new String();
int file_size =0;
byte[] buffer;

259

try {

File f = new File(file_nane);

FilelnputStreamfis = new Fil el nput Strean(f);

file_size = fis.avail able();
buffer = new byte[file_size];
fis.read(buffer);

s = new String(buffer);

Systemout.println("String read:

catch (Exception e) {
Systemout.println("Error reading fromfile: " + file_name +
"I'n"+ " Exception thrown: "+e);

}

return (s);

}

/ n <" +S+" >" ,

/***

Met hod: t ear _down_connections() -

security association (SA) connections between peers.

- |l nput: none.

- Qutput: none.

tears down

exi sting

***/

public void tear_down_connection () {

System out. println("Tear_Down_Connection");
cal c_connection();
read_connection_index_file();

try {

/1 assunption made that for

i nt

counter _tenp = connection_count/2;

if (connection_count == 0) {

}

every SA there are a pair

Systemout.println("No current SAs exist");

el se {
for (int count = 1; count <=counter_tenp; count++) {

260

wite to fifo();

if (count != counter_tenp) {
connecti on_i ndex++;

}

/Iwite to fifo();

}

File f = new File("/var/run/isaknpd. pid");

if (f.exists()) {
FilelnputStreamfis = new Fil el nput Strean(f);
byte[] buffer = new byte[fis.available()];
fis.read(buffer);

fis.close();

String tenpString new String();

String kill _val ue new String(buffer);

String[] s3 = new String[3];

s3[0] = new String("/bin/sh");

s3[1] new String("-c");

s3[2] new String("kill -HUP " + kill _value);

rt.exec(s3).waitFor();
}
}

catch (Exception e) {
Systemout.printin("Error in SPI count.");
Systemout.println("Exception thrown in tear_down_connection e:
"re):

}

write_connection_index file();

/***

Method: wite to fifo()— uses the current connection index
to wite teardown instructions to the |Psec mechanism in
[var/run/isaknmpd.fifo file.

- |l nput: none.

- Qutput: none.

261

***/

public void wite to fifo() {

try {

Systemout.printin("witing to fifo");

File f = new File("/var/run/isaknpd.fifo");

Fi | eQut put Stream fout = new Fil eCut put Strean(f);

Pri nt

out

out

out

Stream out = new PrintStrean(fout)
.println("t Connection-"+connection_index);
.flush();

.close();

fout.close();

catch (Exception e) {Systemout.println("Exception thrown in

wite to Fi

}

FO e: "+e);}

/***

Met hod: synchronized copy_kern_ipsec() - copies the file
[kern/ipsec (file cont ai ni ng t he current security
associ ations) to /root/deno/tenpipsec (file used to parse
security associations). This method is synchronized to
avoi d a deadl ock when various threads, created by the deno,

conpete for this function.

- |l nput: none.

- Qutput: none.

***/

public synchroni zed void copy_kern_ipsec() {

try {

pause(1);
262

String[] s = new String[3];

s[0] = new String("/bin/sh");

s[1l] = new String("-c");

s[2] = new String("cp /kern/ipsec /root/deno/tenpipsec”);
rt.exec(s).waitFor();

catch (Exception e) {
Systemout.printin("in denp-support Exception thrown in

copying file e: "+e);

}
}

/***

Met hod: cal c_connection()— calculates the nunber of
exi sting security associ ati ons (SA) by readi ng
/root/deno/tenpi psec and parsing the information to count
exi sting SAs.

- I nput: none.

- Qutput: none.

***/

public void cal c_connection() {

try

connecti on_count =0;

Eopy_kern_ipsec();
File f = new File("/root/deno/tenpi psec");
pause(1);
if (f.exists()) {
FilelnputStream fis = new Fil el nput Strean(f);

byte[] buffer = new byte[fis.available()];

fis.read(buffer);
String tenpString = new String();

String record = new String(buffer);

StringTokeni zer st = new StringTokeni zer(record);
whil e (st.hasMreTokens()) {

tempString =st.next Token();

if (tenmpString.equals("SPI")) {
263

/1 advance connecti on_counter
connecti on_count ++;

}
A
fis.close();
}
el se {
} Systemout.println("/kern/ipsec File does not exist...");

}

catch (Exception e) { Systemout.printin("ln Calc_Connections
Exception Thrown: "+e);}

}
}

264

APPENDIX F. SPFK.JAVA

/***

Class: SPFK.java - The goal of this class is to translate
KeyNote's conplex assertion format into an easy to

understand syntax and display it in a JFrane.

***/

* SPFK. java
*/

i mport java.awt.*;

i mport javax.sw ng. *;

i mport java.util.x*;

i mport java.awt.event.*;

public class SPFK {
private JFranme frane;
private JText Area textArea;
private deno_support _functions dsf;
private JButton exitButton;
private JPanel contentPane, tool bar;

/***

Met hod: SPFK() - this nmethod initializes the JFrane and
reads in the security policy data froma file.
- Il nput: none.

- Qut put: none.

***/

public SPFK() {
dsf = new denmp_support_functions();

text Area = new JText Area(15, 40);

JScrol | Pane scroll Pane = new JScrol | Pane(text Area);
cont ent Pane = new JPanel (new BorderLayout());

t ool bar = new JPanel ();

t ool bar. set Si ze(100, 75) ;

frame = new JFranme("Security Policy File / Keynote");
scrol | Pane. set Vertical Scrol | Bar Pol i cy(JScrol | Pane. VERTI CAL_SCROLL
BAR_AS_NEEDED) ;

265

exi tButton = new JButton("Exit");
exi t Button. addActi onLi st ener (new Acti onLi stener() {
public void actionPerfornmed (ActionEvent e) {

frame. di spose();

}
1)

t ool bar. add(exi t Button);

cont ent Pane. add(scrol | Pane, BorderLayout. NORTH);
cont ent Pane. add(t ool bar, Bor der Layout . SOUTH) ;

f ranme. get Cont ent Pane() . add(cont ent Pane) ;

frame. pack();

frame. set Visible(true);

String bigString = new String();

bigString = dsf.read_file("/etc/isaknpd/ keynotednffinal.policy");

try {
StringTokeni zer policyST = new StringTokenizer(bigString,
")
whil e (policyST. hasMoreTokens()) {
String policy = policyST. next Token();
showPol i cy(policy);
}
} catch (NoSuchEl enent Exception e) {
Systemout.println("SPFK. Error: " + e);
}
}

/***

Met hod: showPolicy(String policy) — takes input string
(security proposal), parses it into security attributes
and dynam c paraneters, and appends to the scrollable text
ar ea.
- I nput:
- String — security proposal to be parsed.
- Qutput: none.

***/

private voi d showPol i cy(String policy) t hr ows
NoSuchEl enent Excepti on {

String app_domain = null;
String esp_auth_alg = null;

String esp_enc_alg = null;
String esp_present = null;
String ah_auth_alg = null;

266

String ah_present = null

String local _filter_port = null
String network_node = nul |
String renote_filter_port = null
String security_level = null

StringTokeni zer st = new StringTokeni zer(policy);

/1 note that the string tokenizer cannot

use hasMreTokens()

/1 because the token delimter changes during parsing.

Systemout.println("PAicy passed: "+policy);

whil e (st.countTokens() !'= 1) {

val ue;
val ue;
val ue;
val ue;

val ue;

String key = st.nextToken("\"() &r\n");
String equal = st.nextToken("\"");
String val ue = st.next Token("\"");

i f (key.equal s("app_donain"))

if (key.equal s("esp_auth_alg"))
else if (key.equal s("esp_enc_alg"))
else if (key.equal s("esp_present"))
else if (key.equal s("app_domain"))

el se if

| ocal _filter_port = val ue;

val ue;

else if (key.equal s("network_mpde"))

el se i f

renote _filter_port = val ue;

else if (key.equal s("security_level"))

app_domai n

esp_auth_al g

esp_enc_alg

esp_present

app_domai n

net wor k_node

(key.equal s("local _filter_port"))

(key.equal s("rempte_filter_port"))

security_level

ah_auth_alg

+ key);

= val ue;
else if (key.equal s("ah_present")) ah_present = val ue
else if (key.equals("ah_auth_alg"))
val ue;
el se System out. println("SPFK. Unrecogni zed key: "
}
textArea.append("------------ oo oo
\n");
addText ("\n network_node: ", network_node);
addText ("\'n security_level: ", security_level);
addText ("\n esp_present: ", esp_present);
addText ("\n ah_present: ", ah_present);
addText("\n esp_enc_alg: ", esp_enc_alqg);
addText ("\n esp_auth_alg: ", esp_auth_alg);
addText ("\n ah_auth_alg: ", ah_auth_alg);
addText ("\n local _filter_port: ", local _filter_port);
addText ("\n renmote_filter_port: ", renote_filter_port);

267

t ext Area. append("\n\n");
}

/***

Met hod: addText ((String, String) — takes input strings and
appends themto the scrollable text area.
- Input:
- String - tag.
- String — tag val ue.

- Qutput: none.

***/

private void addText (String description, String value) {
if (value !'= null) {
t ext Ar ea. append(description + val ue);
}

268

APPENDIX G. DP_CONSOLE.JAVA

/**

Class: dp_console.java - The dynamic paranmeter console
provides the user with a selection nechanism for network

node and security |level.
**/

i mport javax.sw ng. *;

i mport java.awt.*;

i nport java.awt.event.*;

i mport java.io.*;

i mport java.util.~*;

i mport java.l ang.*;

i mport deno_support _functions;

public class dp_consol e extends JFrane {

private JFranme actionfrane;

private JButton subnmit, exit;
private ButtonG oup networknode, securitylevel;

private JRadioButton nmnormal, nmcrisis, nm.inpact, sl _high,
sl _medium sl _| ow,
private JPanel panel , p, pdpbut t ons,

p2, ptitle, pconments, pacti onbuttons;
private JLabel sl _title, nmtitle, coment, blankl, blank2, bl ank3;

String current_network_node, current_security_level;
private static Runtine rt;
private denmo_support _functions dsf;

/**

Met hod: dp_consol e() constructor — initializes the dynamc

paraneter selection interface.

**/

public dp_console() {

super ("Dynam c Paraneter Sel ection Wndow');

269

addW ndowLi st ener (
new W ndowAdapter () {
public void wi ndowCl osi ng(W ndowEvent e)

[1if (input !'= null)
/1 closeFile();

di spose();

);
set Def aul t Cl oseOper ati on(DI SPOSE_ON_CLOSE) ;

p = new JPanel ();

p2 = new JPanel ();

ptitle = new JPanel ();

pcomrents = new JPanel ();

pdpbuttons = new JPanel ();

pacti onbuttons = new JPanel ();

p. set Layout (new Fl owLayout ());
ptitle.setLayout(new GridLayout(1,2));
pcoment s. set Layout (new Gri dLayout (0, 1));
pdpbuttons. set Layout (new Gri dLayout (4, 2));
actionframe = new JFrane();

pacti onbuttons. set Layout (new Fl owLayout ());
set Cont ent Pane(p) ;

current _network _node = null;

current _security_level = null;
comment = new JLabel (" ")
bl ankl = new JLabel ();

bl ank2
bl ank3

new JLabel ();
new JLabel ();

sl _Iow = new JRadi oButton ("Low', false);
sl _medi um = new JRadi oButton (" Mediunt, false);
sl _high = new JRadi oButton ("Hi gh", false);

nm_nor nmal
nmecrisis
nm_ i npact

new JRadi oButton ("Nornmal", false);
new JRadi oButton ("Crisis", false);
new JRadi oButton ("I npacted", false);

nmtitle
sl _title

new JLabel (" Net wor k Mbdes Sel ection");
new JLabel ("Security Levels Sel ection");

net wor knode = new ButtonG oup();
securitylevel = new ButtonG oup();

submit = new JButton("Submt");
exit = new JButton("Exit");

net wor knode. add(nm_nor mal) ;
270

net wor knode. add(nm cri si s) ;
net wor knode. add(nm_i npact) ;

securityl evel .add(sl _I ow);
securityl evel . add(sl _nmedium;
securityl evel . add(sl _high);

NVRadi oBut t onHandl er nm_handl er new NMRadi oButt onHandl er () ;
SLRadi oBut t onHandl er sl _handl er new SLRadi oButtonHandl er () ;
Submi t Butt onHandl er sb_handl er = new Submi t Butt onHandl er () ;
Exi t But t onHandl er eb_handl er = new Exit Butt onHandl er () ;

subm t. addActi onLi stener (sb_handl er);
exi t.addActi onLi stener(eb_handl er);

nm nor mal . addl t enLi st ener (nm_handl er);
nm crisis.addltenLi stener(nm_handl er);
nm_i npact . addl t enLi st ener (nm_handl er);

sl _hi gh. addl t enli st ener (sl _handl er);
sl _medi um addl t enli st ener (sl _handl er);
sl _| ow. addl t enLi st ener (sl _handl er);

submi t.setVisible(true);
exit.setVisible(true);

bl ankl. set Vi si bl e(fal se);
bl ank2. set Vi si bl e(f al se);
bl ank3. set Vi si bl e(f al se);

pdpbuttons.add(nmtitle);
pdpbuttons. add(sl _title);

pdpbutt ons. add(nm_nor nal) ;
pdpbuttons. add(sl _| ow);
pdpbuttons. add(nmcrisis);
pdpbut t ons. add(sl _medi un) ;
pdpbutt ons. add(nm_i npact) ;
pdpbut t ons. add(sl _hi gh);
p. add(pdpbuttons);
pcomrent s. add(coment) ;

p. add(pcomrent s) ;

pacti onbuttons. add(bl ankl);
pacti onbuttons. add(submt);
pacti onbutt ons. add(bl ank2) ;
pacti onbuttons. add(exit);
pacti onbuttons. add(bl ank3);
p. add(pacti onbuttons);

set Si ze(350, 150);
set Resi zabl e(true);
setVisible (fal se);

dsf = new deno_support_functions();
rt = Runtime.getRuntine();

271

/**

Met hod: start_dp_consol e() — nmakes the dp_consol e visible.
- Il nput: none.
- Qutput: none.

**/

public void start_dp_consol e() {

setVisible (true);

}

/**

Met hod: reset_error_panel () — clears error nmessage panel
- Il nput: none.
- Qutput: none.

**/

public void reset_error_panel () {

coment . set Text ("");

/**

Met hod: set _dynami c_paranmeters() — stores the value of the
dynam ¢ paranmeters in a file.
- |l nput: none.

- Qutput: none.

**/

public void set_dynam c_paraneters() {

delete file();
write_dynanm c_parameters_file();

272

/**

Met hod: wite_dynam c_paraneters file — wites the globa
current val ue of t he dynami ¢ par anet ers to
fusr/src/sbin/isaknmpd/ dynam c_paraneters.

- |l nput: none.

- Qut put: none.

**/

public void wite_dynam c_paraneters_file() {

try {
File f = new

File("/usr/src/sbin/isaknpd/ dynam c_paraneters");
Fil eQut put Stream fos = new Fil eQut put Strean(f);

PrintStream out = new PrintStrean(fos);

out.println("network_node = + current _network_node+ "\ n");

out.println("security level = " + current_security_ level +
Il\nll);
fos.close();
out.close();
}
catch (Exception e) {
System out. println("Execption Thrown in Wite DP e: " +e);
}
}

/**

Met hod: print_dynam c_parameters file() - displays the
current value of network node and security level to the
system consol e for troubl e shooting purposes.

- I nput: none.

- Qutput: none.

**/

273

public void print_dynam c_paraneters_file() {
try {

File f = new File("/usr/src/sbhin/isaknpd/ dynam c_paraneters");
FilelnputStream fis = new Fil el nput Strean(f);
int size_before = fis.available();
Systemout.println("file size: " + size_before);
byte[] buffer = new byte[fis.available()];
fis.read(buffer);
String tenpString = new String();
String record = new String(buffer);
Systemout.println("File : " + record);

fis.close();

}
catch (Exception e) {
System out. println("Exception throwne: "+e);}

/**

Met hod: read_dynam c_paraneters_file() - reads in the
value of network node and security level from file
/usr/src/sbin/isaknpd/ dynam c_paraneters and stores them in
the class gl obal variables respectively.

- Il nput: none.

- Qut put: none.
**/
public void read_dynam c_paranmeters_file() {

System out . printl n("Readi ng dynam c paraneters");

try {

File f = new File("/usr/src/sbin/isaknpd/ dynam c_paraneters");

if (f.exists()) {

274

Systemout.println("dynam c_paraneters File exists...");
FilelnputStreamfis = new Fil el nput Strean(f);
byte[] buffer = new byte[fis.available()];
fis.read(buffer);
String tenpString = new String();
String record = new String(buffer);
StringTokeni zer st = new StringTokeni zer(record);
whil e (st.hasMreTokens()) {
tempString =st.next Token();
if (tenpString.equal s("network_node")) {

/1 skip equals sign
st . next Token();

current _network_node = st.nextToken();

else if (tenpString.equals("security_level")) {

/1 skip equals sign
st . next Token();

current _security_ |l evel = st.nextToken();
}
}

fis.close();

}
el se {

Systemout. println("dynam c par aneters File does not
exist...");

}
}
catch (Exception e) { Systemout.println("Exception Thrown reading

dp file: "+e);}
}

/**

Met hod: delete file() — deletes existing dynam c paraneter file.

- I nput: none.

- Qutput: none.

275

**/

public void delete_file() {

try {
File f = new
File("/usr/src/sbin/isaknmpd/ dynam c_paraneters");
f.delete();

Systemout.println("del eti ng dynam c_paraneters file.");
catch (Exception e) {

Systemout.println("Exception thrown while trying to delete
dynam c_paraneters file. exception: "+e);}

}

/**

Cl ass: SLRadi oButtonHandl er inplenments ItenListener —
security level radio button action handl er

**/

private class SLRadi oButtonHandl er inplenents ItenListener {

public void itenfstateChanged(ltenEvent e)

{
reset _error_panel ();
if (current_security level == null) {
current_security_level = new String();

}

Systemout.printin("in SL Radio Button itemlistener");
if (e.getSource() == sl_high) {

Systemout.println("Security Level Hi gh selected.");
current _security level = "high";

else if (e.getSource() == sl_nedium

Systemout.println("Security Level medium selected.");
current _security_ |l evel = "nmedi unt

}

else if (e.getSource() == sl_low) {

276

Systemout.println("Security Level |ow selected.");
current _security_level = "Iow'

/**

Cl ass: Subni t Butt onHandl er i mpl ements ActionListener -

subm t button action handl er

**/

private class SubnitButtonHandl er inplenments ActionListener {

public void actionPerformed(Acti onEvent e)

{

try {
reset _error_panel ();

Systemout.println("Submt Button sel ected");
if
((current _networ k_node==nul |) &&(current _security_Ilevel ==nul |')) {

comrent . set Text ("You nust sel ect a network nmode and
security level");

}

else if (current_network_nmode == nul |){
coment . set Text ("You must sel ect a network node");

Llse if (current_security_level==null) {

comment . set Text (" You nmust select a security level.");
}
el se {
coment . set Text ("
set _dynam c_parameters();
print_dynam c_paraneters _file();
i f (dsf.daenon_running()) {

Systemout. println("daenon is running.");

dsf.copy_kern_i psec();
dsf.tear_down_connection();

277

dsf.flush_ipsec();
dsf.l oad_spd();

else { // daenpbn not running...

comment . set Text (" Pl ease start |Psec nechanism from
Qoss nenu");

}
}
}
catch (Exception e2) {
Systemout.println("Exception Thrown in Subnit But t on
Handl er.");
System out. println("Exception: "+e2);
}
}
}

/**

Cl ass: ExitButtonHandler inplenents ActionlListener — Exit

button action handl er
**/

private class ExitButtonHandl er inplenents ActionListener {

public void actionPerfornmed(Acti onEvent e)

{ reset _error_panel ();
Systemout.println("Close Button Sel ected");
di spose();

}

/**

Cl ass: NVRadi oBut t onHandl er i npl enent s I tenli stener -

networ k node radi o button acti on handl er
***********************************-k-k*****************************/

private class NVRadi oButtonHandl er inplenents ItenListener {
278

public void itenfttateChanged(ltenEvent e)

{
reset _error_panel ();
if (current_network _nmode == null) {
current _network_node = new String();
}
if (e.getSource() == nm_normal){
System out . println("Network Mode Normal selected.");
current _network_nmode = "normal ";
}
else if (e.getSource() == nmecrisis){
Systemout.println("Network Mode Crisis selected.”);
current _network_node = "crisis";
}
else if (e.getSource() == nm. npact){
System out. println("Network Mde | npacted selected.");
current _network_node = "inpacted";
}
}

279

THISPAGE INTENTIONALLY LEFT BLANK

280

APPENDIX H. IPSECINFO.JAVA

/***

Class: ipsecinfo.java - provides a display nechanism for
the Security Associati on Dat abase (SAD)

**/

i mport javax.sw ng. *;

i port java.awt.*;

i mport java.awt.event.*;
i mport java.io.*;

i mport java.util.*;

public class ipsecinfo extends Thread {

File f2 = new File("/root/deno/tenpi psec");

private static Runtinme rt;

private JFrame j;

private JTextField[] connected_| abel, unconnected_| abel ;

public JText Field[] desti nati on, source, pr ot ocol , enc_al g,
enc_aut h, auth_al g;

private JTextField[] title, dest_label, src_|abel, protocol | abel
enc_al g_l abel, enc_auth_| abel, auth_al g | abel,status, blankl, blank2;

private JTextField blank_field;

[l private Container c;

private ObjectlnputStreaminput;

private BorderlLayout |ayout;

private GidLayout gl;

private JPanel [] jpl, jp2, jp3, jp4, jp5, jp6, jp7, blank

private JPanel p;

private String spi[];

private JPanel tool bar

private JPanel [] pvec;

private JButton exit;

private int SA nunber =0;

private JPanel contentPane;

bool ean first _tinme = true;

bool ean test _catch = fal se;

deno_support_functions dsf = new denp_support_functions();

private boolean kill _thread = fal se;

/***
Met hod: ipsecinfo() — class constructor. Initializes JFrane.
**/

public ipsecinfo() {
281

Systemout.println("Testl..");
rt = Runtinme.getRuntine();
j = new JFrane(" OpenBSD | Psec Status W ndow');

j . addW ndowLi st ener (
new W ndowAdapter () {
public void w ndowCl osi ng(W ndowEvent e)
{
j - di spose();
kill _thread = true;

)

t ool bar = new JPanel ();

exit = new JButton("Exit");

exit.addActi onLi stener(new ActionListener() {
public void actionPerformed (ActionEvent e) {

j . di spose();
kill _thread = true;
}
}
)

t ool bar. add(exit);

p = new JPanel ();

p. set Layout (new Gri dLayout (0, 1));

JPanel contentPane = new JPanel ();

cont ent Pane. set Layout (new BorderLayout ());

cont ent Pane. add(p, BorderLayout. NORTH);
cont ent Pane. add(t ool bar, BorderLayout. SOUTH);
j . set Cont ent Pane(cont ent Pane) ;

Systemout.println("Test2..");
JPanel enptyPanel = new JPanel ();

JTextField enptyText = new JTextField("No current
associ ation (SA) established");

enpt yText . set Edi t abl e(fal se);

enpt yPanel . add(enpt yText) ;

p. add(enpt yPanel) ;

j - pack();

j - setResi zabl e(true);

j.setVisible(true);

}

security

/***

- Method: franme_initialization() — initializes the JFranme

to repai nt new SAs.

282

- |l nput: none.

- Qut put: none.

**/

public void frane_initialization() {

i nt nunber = 10;
/! JFranme Initiization

pvec = new JPanel [nunber];

j pl = new JPanel [nunber];

j p2 = new JPanel [nunber];

j p3 = new JPanel [nunber];

j p4 = new JPanel [nunber] ;

j p5 = new JPanel [nunber] ;

j p6 = new JPanel [nunber] ;

i p7 = new JPanel [nunber];

bl ank = new JPanel [nunber];

spi = new String[nunber];

dest | abel = new JTextFi el d[nunber];
src_| abel = new JText Fi el d[nunber];
protocol | abel = new JTextFi el d[nunber];
enc_al g_l abel = new JText Fi el d[nunber];
enc_aut h_I abel = new JText Fi el d[nunber];
auth_al g | abel = new JTextFi el d[nunber];

status = new JText Fi el d[nunber];
connect ed_| abel = new JText Fi el d[nunber];
unconnect ed_| abel = new JText Fi el d[nunber];

destination = new JText Fi el d[nunber];
source = new JText Fi el d[nunber];
protocol = new JTextFi el d[nunber];
enc_al g = new JText Fi el d[nunber];
enc_auth = new JText Fi el d[nunber];
auth_al g = new JText Fi el d[nunber];

bl ankl = new JText Fi el d[nunber];
bl ank2 = new JText Fi el d[nunber];
SA nunber =0;

p.removeAl | ();

p. set Layout (new Gi dLayout (0, 1));

}

/***

Met hod: prelimanary_test(StringTokenizer st) - conpares the

current SA's in the JFrane with the SA's fromthe new file.

283

This is performed to avoid wunnecessary painting and

mai ntai n good di splay resol ution.

- I nput:
- StringTokenizer st — contents of the file to be
verified.
- Qut put:
- Boolean — True if string contains new SA's.

Fal se ot herw se.

**/

bool ean prelimanary_test(StringTokeni zer st) {

bool ean found_match = fal se;

bool ean repaint = fal se

String tenpString = new String();
StringTokeni zer s = st;

i nt spi_count =0;

whil e (s. hasMoreTokens()) {

tempString = s.next Token();
if (tenpString.equals("SPl"))
spi _count ++;
}
if (spi_count !'= SA nunber) {
repaint = true;
}

el se {

whil e (st.hasMreTokens()) {

tempString = st.nextToken();
if (tenmpString.equals("SPI")) {
found_match = fal se;

/1 advance token passed assi gnnment
tempString = st.nextToken();
tempString = st.nextToken();
for (int c=0; c<SA nunber; c++) {

if (spi[c].equals(tempString)) {
found_match = true;

br eak;

}
}

/1 if match not found after searching array...repaint
needed.

284

}

if (!found_match) {
return(true);
}

return (repaint);

}

/***

Method: String wait_for_full _copy(String record)— verifies
that all the required tags exist in the string prior to
parsing. If not, file is reread and the string is verified

until all the tags are found.

- I nput:
- String record - <contents of the file to be
verified.

- Qut put:

- String — String that contains all required fields.

**/

public String wait _for_full _copy(String record) {

StringTokeni zer st = new StringTokeni zer(record);
String tenpString = new String();

bool ean redo = fal se;

bool ean keep_l ooki ng = true;

bool ean not _found = true;

bool ean checkl = fal se

bool ean check2 = fal se;

bool ean check3

fal se;

Fil el nput Stream i n2

byt e[]

buf f er;

i nt |ength;

try {

whil e

(st. hasMoreTokens() && keep_Il ooking) {
tempString =st.next Token();
if (tenpString.equals("SPI")) {

not _found = true;
checkl = fal se

285

Error:

check?2
check3

= fal se;

= fal se;

whil e (st.hasMoreTokens() && not_found) {
tempString = st.nextToken();

if (tenpString.equals("Destination")) {

checkl = true;
else if (tenmpString.equal s("Source")){

check2 = true

}

else if (tempString.equals("xform')) {
check3 = true;
}

if (checkl && check2 && check3)
not _found = false;

if (tenpString.equals("SPI")){
not found = fal se;
redo = true;

if (redo) {

try {

+ e);

try {

| ong pauseTinme = (long) (1*1000);
Thr ead. sl eep(pauseTi ne) ;

catch (Exception etp) {
Systemout.print("Run Error:
}

Systemout.printin("in wait...");
dsf. copy_kern_i psec();

in2 = new Filel nputStrean(f2);
buffer = new byte[in2.available()];
in2.read(buffer, 0, buffer.length);
record = new String(buffer);

st = new StringTokeni zer(record);

i n2.close();

}

catch (Exception e) {

Systemout.print("in ipsecinfo wait for

286

+ etp);

ful

copy Run

redo = fal se;

catch (Exception e) {
Systemout.print("Run Error:

+e);

}

return (record);

}

/***

Met hod: parse(String record) — parses the string into SA s
to be displayed on the JFrane.
- I nput:
- String record — contains the file to be parsed.
- Qutput: none.

**/

public void parse(String record)

{
String tenpString = new String();
bool ean esp = fal se;
bool ean ah = fal se;
bool ean prelimtest = false;
int count = -1;
int file_contents_check = 0;

try {
bool ean no_SA flag = true;
record = wait_for_full_copy(record);
StringTokeni zer st = new StringTokeni zer(record);
StringTokeni zer tenp_st = new StringTokeni zer(record);
/1 if prelimanary test passed.... continue parsing..

if (prelimnary test(tenp_st)) {

frame_initialization();
test _catch= true

287

whil e (st.hasMreTokens()) {
tempString =st.next Token();

if (tenpString.equals("SPI")) {
[lskip =
st . next Token();
no_SA fl ag=fal se;

if (count I'= -1) {

[/ setup blank Iine

bl ank[count] = new JPanel (new Gri dLayout(1, 2));
bl ank1[count] = new JTextField(" ");

bl ank2[count] = new JTextField(" ");

bl ank1[count] . set Edi t abl e(fal se);

bl ank2[count] . set Edi t abl e(fal se);

bl ank[count] . add(bl ank1[count]);

bl ank[count] . add(bl ank2[count]);

bl ank[count] . set Vi si bl e(true);

p. add(bl ank[count]);
}

count = count + 1;
spi[count]= (String)st.nextToken();

esp = fal se
ah = fal se

else if (tempString.equals("Destination")) {
st . next Token() ;

/1 setup Destination pane
i pl[count] = new JPanel (new GidLayout(1,2));

dest | abel[count] = new JTextField ("Destination: ");
destination[count] = new JTextField();

dest | abel [count]. set Edi tabl e(fal se);
destination[count].setEditabl e(fal se);

j pl[count] . add(dest | abel [count]);

j pl[count]. add(destination[count]);
destination[count].setText((String) st.nextToken());
j pl[count].setVisible(true);

p. add(j pl[count]);

}
else if (tenmpString.equals("Source")) {
st . next Token() ;

/!l setup source pane
288

j p2[count] = new JPanel (new GidLayout (1, 2));
src_l abel [count] = new JTextField ("Source: ");
source[count] = new JTextField();

src_l abel [count].setEditabl e(fal se);

source[count]. set Edi t abl e(fal se);

j p2[count].add(src_I| abel[count]);

j p2[count]. add(source[count]);

source[count].set Text ((String) st.nextToken());
j p2[count].setVisible(true);
p. add(j p2[count]);

//setup status pane
j p3[count] = new JPanel (new GidLayout (1, 2));
status[count] = new JTextField ("Connection Status:

")
connected_l abel [count] = new JTextField ("1 Psec
connection established");
status[count] . set Editabl e(fal se);
connected_| abel [count] . set Edi t abl e(fal se);
j p3[count].add(status[count]);
j p3[count].add(connected_| abel [count]);
jp3[count].setVisible(true);
p.add(j p3[count]);

}

else if (tenpString.equal s("xforn')) {
st . next Token() ;
tempString =(((String) st.nextToken()) + " " +
((String) st.nextToken()));

// setup Protocol pane
j p4[count] = new JPanel (new GidLayout (1, 2));
protocol | abel[count] = new JTextField (" Protocol

protocol [count] = new JTextField();
protocol _| abel [count]. set Edi tabl e(fal se);
protocol [count]. set Edi t abl e(fal se);

j p4[count] . add(protocol _| abel[count]);

j p4[count] . add(protocol [count]);

protocol [count]. set Text (tenmpString);
j p4[count].setVisible(true);
p.add(j p4[count]);

if (tenpString.equal s("<lPsec ESP>")) {
esp = true;

else { Systemout.printlin("Protocol: "+tenmpString);}
if (tenpString.equal s("<lPsec AH>")) {
Systemout.printin("IPsec AH....");
ah = true;
}

289

else if (tenpString.equal s("Encryption")) {

st. next Token();
tenpString = st.nextToken();

//setup encryption al go pane

j p5[count] = new JPanel (new GridLayout (1, 2));

enc_al g_label[count] = new JTextField ("Encryption
Algorithm ");

enc_al g[count] = new JTextField();

enc_al g_l abel [count] . set Edi t abl e(fal se);

enc_al g[count] . set Edi t abl e(f al se);

j p5[count].add(enc_al g_Il abel [count]);

j p5[count].add(enc_al g[count]);

enc_al g[count].set Text(tenpString);
j p5[count].setVisible(true);
p.add(j p5[count]);

}
else if (tenmpString.equals("Authentication")) {

st . next Token();
tempString = st.nextToken();

if (esp) {
[/l setup esp authentication pane
j p6[count] = new JPanel (new GidLayout (1, 2));

enc_aut h_| abel [count] = new JTextField
("Encryption Authentication Algorithm ");
enc_auth[count] = new JTextField();

enc_aut h_I abel [count]. set Edit abl e(fal se);
enc_aut h[count]. set Edi t abl e(fal se);

j p6[count].add(enc_aut h_| abel [count]);

j p6[count] . add(enc_aut h[count]);

enc_aut h[count] . set Text (tenmpStri ng);
j p6[count] . set Visible(true);

p. add(j p6[count]);

/lesp = fal se

}
else if (ah) {

[/l setup ah authentication pane

jp7[count] = new JPanel (new GidLayout (1, 2));

auth_al g_| abel [count] = new JTextField
(" Aut hentication Algorithm ");

auth_al g[count] = new JTextField();

auth_al g | abel [count]. setEditabl e(fal se);

auth_al g[count]. set Edi t abl e(fal se);

jp7[count].add(aut h_al g_l abel [count]);

jp7[count].add(aut h_al g[count]);

auth_al g[count] . set Text (tenpString);

j p7[count].setVisible(true);

p.add(j p7[count]);

290

//ah = fal se;

/[Check for no SA' s

if (no_SA flag) {
JPanel enptyPanel = new JPanel ();
JTextField emptyText = new JTextField("No current security
associ ation (SA) established");
enpt yText . set Edi t abl e(fal se);
enpt yPanel . add(enpt yText) ;
p. add(enpt yPanel) ;
} j . pack();

el se {
/1l increnment by 1 from array adj ustnent
count = count +1;
/1l setup JFranme size
if (count < 2) j.setSize(300, 300);
else if (count < 3) j.setSize(400, 300);
else if (count < 4) j.setSize(400,400);
else if (count < 5) j.setSize(400,500);
el se j.setSize(600, 600);

}

test_catch = true;
SA nunber = count;

}

el se {
Systemout.println("Prelimnary Test failed...skipping
parsing..");}

}

catch (Exception e) {Systemout.println("Erooring in parsing: "
+e); }

}

}

/***

- Method: run() — continually checks files date-time-stamp and if file is

updated copies file and reads data into a string.
291

- Input: none.
- Output: none.

**/

public void run()

{

int current_file_size=0;
int new file_size= 0;
long ol d _date_tinme_stanp
| ong new date_tinme_stanp
int file_size=0;

FilelnputStreaminil,in2;
byte[] buffer;
byte[] buffertenp;
String record,;
File f1; //,f2;
try {
fl1 = new File("/kern/ipsec");
}
catch (Exception e) { Systemout.println("Error: "+e);}
while (!'kill_thread) {

try {

| ong pauseTinme = (long) (1*1000);
Thr ead. sl eep(pauseTi ne) ;
}

catch (Exception etp) {
Systemout.print("Run Error: " + etp);
}

try {
if (fl.exists()) {

inl = new FilelnputStream(fl);
new file_size = inl.available();

new date tine_stanp = fl.lastMdified();
if (new date_tine_stanp != old_date_tine_stanp) {

in2 = new Fil el nputStream(f2);

[lcopy file
dsf.copy_kern_i psec();
file_size = in2.available();

buffer = new byte[in2.available()];
buffertenp = new byte[in2.available()];

i n2.read(buffer, 0, buffer.length);
292

old_date_tinme_stanp = new_date_time_stanp;
record = new String(buffer);

in2.close();

parse(record);

}

inl.close();

}

catch (Exception e) {
Systemout.print("Run Error: " + e);

}

293

THISPAGE INTENTIONALLY LEFT BLANK

294

APPENDIX |. TCPDUMP.JAVA

/***

Cl ass: tcpdunp.java - provide the user with graphical
consol e display of tcpdunp.

**/

i mport javax.sw ng. *;

i mport java.awt.*;

i mport java.awt.event.*;
i mport java.io.*;

i mport java.util.x*;

public class tcpdunp extends Thread {

private static Runtime rt;
private JFrame j;

private JScrol | Pane jsp;

private JLabel jl2;

private JTextArea jta;

private JPanel tool bar;

private JPanel contentPane;
private ObjectlnputStreaminput;
private BorderlLayout |ayout;
private GridLayout gl;

private JButton exit;

private demp_support _functions dsf;
| nput Stream i n;

Process p;

bool ean stop = fal se;

/***
Met hod: tcpdunp() — constructor for the class.

**/

public tcpdunmp() {
dsf = new deno_support_functions();

Systemout.println("in constructo");
rt = Runtinme.getRuntine();

new JLabel ();
new JText Area(10, 70);

295

jta.setLi neWap(true);
jta.set Rows(10);

cont ent Pane = new JPanel ();
t ool bar = new JPanel ();

exit = new JButton("Exit");
exit.addActionLi stener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
stop = true;
dsf.stop_t cpdunmp();
j - di spose();

)
j = new JFranme(" OpenBSD | Psec TCPDUMP Vi ew W ndow") ;
j . addW ndowLi st ener (

new W ndowAdapter () {
public void w ndowCl osi ng(W ndowEvent e)

{
stop = true;
dsf.stop_tcpdunp();
j . di spose();

}

)

t ool bar. add(exit);
jsp = new JScrol | Pane(jta);
j sp.setVertical Scrol | Bar Pol i cy(JScrol | Pane. VERTI CAL_SCROLLBAR_AS _
NEEDED) ;
cont ent Pane. set Layout (new BorderLayout ());
/I cont ent Pane. set PreferredSi ze(new Di nensi on(600, 250)) ;
cont ent Pane. add(j sp, BorderLayout. NORTH);
cont ent Pane. add(t ool bar, BorderLayout. SOUTH);
t ool bar. set Si ze(600, 50) ;
j . set Cont ent Pane(cont ent Pane) ;

j . pack();
j.setVisible(true);

}

/***

Met hod: start _tcpdump() - executes tcpdunp and creates a
pi pe to capture packet information.

- Il nput: none.

- Output: none.
**/

public void start _tcpdunp() {

296

try {
Systemout.printin("in try for rt...");

String[] s = new String[3];

s[0] = new String("/bin/csh");

s[1] = new String("-c");

s[2] = new String("tcpdunp -N -v");
p=rt.exec(s);

in = p.getlnputStream);
Systemout.printin("perforned rt.");

catch (Exception e) {
System out. println("Exception thrown in tcpdunp"+e);

}

/***

Met hod: repaint_frame() — this nethod generates the output
from the piped stream and displays to the scrollable text
area.

- |lnput: none.

- Output: none.

**/

public void repaint_frame() {

String line;
try {
Systemout.printlin("in repaint_frame");
Buf f er edReader br = new Buf f er edReader (new

| nput St reanReader (i n));

jta.setText (" TCPDUWP Qutput....");
while (stop == false) {
try {
line = br.readLine();
StringTokeni zer token = new StringTokenizer(line, ">

coAn\r");
bool ean found = fal se;
whi l e (token. hasMoreTokens()) {
String tok = token. next Token();
if (tok.equals("athina") || tok.equal s("nshn3")) {
found = true;
}

}

297

if (found) ({
Systemout.println("here: "+line);
jta.append("..ok..\n");
jta.append(line);
}
}
catch (Exception e2) {

System out. println("Exception throw try to buffer read
for tcpdump: "+e2);}

}
}
catch (Exception e) {
Systemout.printin("Error reading tcpdunmp file: "+e);

}
}

/***

Met hod: run() — run nethod for the thread.
**/

public void run()

{
start _tcpdump();
repai nt _franme();
}
}

298

APPENDIX J. ISAKMPD.CONF FILE

The following is the isakmpd.conf file used in the testing phase.

Note: only fields required after modifications to 1Psec/IKE/ISAKMPD mechanism were
those related to network connections (1P Addresses and Net masks), ISAKMP Phase |
and certificates. All ISAKMP Phase Il was derived from isakmpd.policy/K eyNote.

A configuration sanpl
daenon.

[General]

Li st en-on=
Shar ed- SADB=
Retransmi t s=
Exchange- max-ti ne=

[Phase 1]
#set-up to work specif
131.120. 8. 95=

#set-up to work specif
[Peer-131.120. 8. 95/ 131.
Phase=

Addr ess=
Local - address=
Transport =
Configuration=

Aut henti cati on=

#Must stay - by CDA
[Def aul t - mai n- node]
DO =
EXCHANGE_TYPE=
Transf orns=

Certificates stored
[X509-certificates]
CA-directory=
Cert-directory=
#Accept - sel f-si gned=
Privat e-key=

e for the isaknmpd | SAKMP/ Cakl ey (aka | KE)

131.120.8.91
Def i ned

5

120

cally with athina with new configuration style
Peer-131.120.8.95/131.120.8.91

cally with athina with new configuration style
120. 8. 91]

1

131.120. 8. 95

131.120.8.91

udp

Def aul t - mai n- node

mekm t asdi goat

| PSEC
| D_PROT
3DES- SHA

n PEM f or mat
[etc/isaknpd/cal
/etc/isaknpd/certs/

defi ned
[etc/isaknpd/ privat e/ MSHN3. key

299

THISPAGE INTENTIONALLY LEFT BLANK

300

APPENDIX K. ISAKMPD.POLICY FILE

The following is the isaskmpd.policy file used in the testing phase.
Note: Refer to Appendix M Table M.1 for summary of security proposals.

KeyNot e- Ver si on: 2

Comment: Policy file for Network Mbdes and Security Levels
Aut hori zer: "POLI CY"

Li censees: "passphrase: nekm t asdi goat"

Conditions: ((app_domain == "IPsec policy") &&
(
((network_node == "normal") &&
(
((security_level == "low') &&
(
((esp_present == "yes") &&
((local _filter_port == "23") ||
(renote_filter_port == "23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hmac- nmd5")
)
| |
((ah_present == "yes") &&
((local _filter_port == "79") ||
(renote filter_port == "79")) &&
(ah_auth_al g == "hmac- nd5")
)
)
)
| |
((security_level == "npediun') &&
(
((esp_present == "yes") &&
((local _filter_port == "23") ||
(renote_filter_port == "23")) &&
(esp_enc_alg == "cast") &&
(esp_auth_alg == "hmac-sha")
)
| |
((ah_present == "yes") &&
((local _filter_port == "79") ||
(renote filter_port == "79")) &&
(ah_auth_al g == "hmac- nd5")
)
)
)
|
((security_level == "high") &&
(
((esp_present == "yes") &&
((local _filter_port == "23") ||
(renote_filter_port == "23")) &&
(esp_enc_alg == "3des") &&
(esp_auth_alg == "hnmac-sha")

301

(renote_filter_port

)
)
)

)

N

(
(

((
(

(renote_filter_port

(renote_filter_port

)
)
| |
((
(
(renote_filter_port ==
(renote filter_port ==
)
)
| |
((
(

(renote_filter_port

(networ k_node

? |
(== "yes") &&
" 79")

(ah_present

((local _filter_port

"79")) &&
(ah_auth_al g

)

"hmac-sha")

"inpacted") &&

security_level "low') &&

((esp_present "yes") &&

((local _filter_port == "23")
"23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hnmac- nd5")
)
|
((ah_present == "yes") &&
((local _filter_port == "79")
"79")) &&
(ah_auth_al g == "hmac- nd5")
)
security_level == "nediun) &&
((esp_present == "yes") &&
((local _filter_port == "23")
"23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hmac- nmd5")
)
| |
((ah_present == "yes") &&
((local _filter_port == "79")
"79")) &&
(ah_auth_al g == "hmac- nd5")
)
security_level == "high") &&
((esp_present == "yes") &&
((local _filter_port == "23")
"23")) &&
(esp_enc_alg == "3des") &&
(esp_auth_alg == "hmac- nmd5")
)

I
302

(renote_filter_port

((ah_present
((local _filter_port
"79")) &&
(ah_auth_alg
)

"yes") &&

"79")

"hmac-sha")

)
)
)
i
((network_node == "crisis") &&
(
((security level == "low') &&
(
((esp_present == "yes") &&

(renote_filter_port

(renote_filter_port

)
)
| |
((
(
(renote filter_port ==
(renote filter_port ==
)
)
|
((
(

(renote_filter_port

((local _filter_port == "23")
"23")) &&
(esp_enc_alg == "3des") &&
(esp_auth_alg == "hmac-sha")
)
| |
((ah_present == "yes") &&
((local _filter_port == "79")

"79")) &&
(ah_auth_al g

"hmac-sha")

)
security_level == "nmediunt) &&
((esp_present == "yes") &&
((local _filter_port == "23")
"23")) &&
(esp_enc_al g == "3des") &&

(esp_auth_alg

)
| |
((ah_present
((local _filter_port ==
"79")) &&

(ah_auth_al g

(esp_auth_alg

)

|
((ah_present ==
((local _filter_port

303

"“hmac-sha")

"yes") &&

"79")

"hmac-sha")

)
security_level == "high") &&
((esp_present == "yes") &&
((local _filter_port == "23")
"23")) &&
(esp_enc_alg == "aes") &&

"“hmac-sha")

"yes") &&

"79")

(renpte_filter_port == "79")) &&

(ah_auth_al g == "hmac-sha")
)
)
)
)
)
| |
((network_node == "default") &&
(security_level == "default") &&
(
((esp_present == "yes") &&
((local _filter_port == "23") ||
(renote filter_port == "23")) &&
(esp_enc_alg == "des") &&
(esp_auth_alg == "hnmac- nd5")
)
| |
((ah_present == "yes") &&
((local _filter_port == "79") ||
(renote_filter_port == "79")) &&
(ah_auth_al g == "hmac- nd5")
)
)
)
)
)
-> "true";

304

APPENDIX L. KEYNOTEDNFFINAL.POLICY FILE

The following file is the keynotednffinal.policy file used in the testing phase. The fileis
generated by the DNF module which converts the condition assertion found
inisakmpd.policy into a DNF form.

Note: Refer to Appendix M Table M.1 for summary of security proposals.

(el ocal _filtter_port == "23") && (esp_auth_alg == "hnmac-
sha")) && (esp_enc_alg == "3des")) && (esp_present == "yes")) &&
(security_Ilevel == "high")) &% (network _nbde == "normal")) &&
(app_domain == "lIPsec policy")) || (((((((remte_filter_port == "23")
&% (esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "3des")) &&
(esp_present == "yes")) && (security level == "high")) && (network_node
== "normal ")) && (app_donmain == "1 Psec policy"))) []
(((((((local _filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) && (security_level == "high")) && (network_node
== "normal ")) && (app_donai n == "I Psec policy")) |

((((((remote_filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) && (security level == "high")) && (network_node
== "normal ")) && (app_donai n == "l Psec policy")))) |

(CC((((((local _filter_port == "23") && (esp_auth_alg == "hmac-sha")) &&
(esp_enc_alg == "cast")) && (esp_present == "yes")) && (security_level

== "nediun')) && (network_nmode == "normal")) && (app_domain == "I|Psec
policy")) || (((((((remote_filter_port == "23") && (esp_auth_alg ==
"hmac-sha")) && (esp_enc_alg == "cast")) && (esp_present == "yes")) &&
(security_|evel == "mediunm')) && (network_node == T"npormal")) &&
(app_domain == "IPsec policy"))) || (((((((local _filter_port == "79")
&% (ah_auth_alg == "hmac-nd5")) && (ah_present == "yes")) &&
(security_|evel == "mediun')) && (network _npbde == "normal")) &&
(app_domain == "IPsec policy")) || ((((((remote_filter_port == "79") &&
(ah_auth_al g == "hmac- md5")) && (ah_present == "yes")) &&
(security_level == "mediunm')) && (network_node == "normal")) &&
(app_domain == "IPsec policy"))))) || (((((((((local_filter_port ==
"23") && (esp_auth_alg == "hmac-md5")) && (esp_enc_alg == "des")) &&
(esp_present == "yes")) && (security_level == "low')) && (network_node
== "normal ")) && (app_donai n == "1 Psec policy")) []
(((((((remote_filter_port == "23") && (esp_auth_al == "hmac-nd5")) &&
(esp_enc_alg == "des")) && (esp_present == "yes")) && (security_level

= "low')) && (network_mpde == "normal")) && (app_donmain == "IPsec
policy"))) || (((((((local _filter_port == "79") && (ah_auth_alg ==
"hmac-nmd5")) && (ah_present == "yes")) && (security level == "low')) &&
(network_node == "normal")) && (app_domain == "IPsec policy")) ||
((((((remote_filter_port == "79") && (ah_auth_alg == "hmac-nd5")) &&
(ah_present == "yes")) & (security_level == "low')) && (network_node
== "normal ")) && (app_domai n == "1 Psec policy"))))) []
(((((((local _filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_al g == "des")) &% (esp_auth_alg == "hmac- md5")) &&
((network_mde == "default") && (security level == "default"))) ||
(((((remote_filter_port == "23") && (esp_present == ‘"yes")) &&
(esp_enc_al g == "des")) &% (esp_auth_alg == "hmac- md5")) &&
((network_mode == "default") && (security level == "default")))) ||

305

(((((local _filter_port = "79") && (ah_present = "yes")) &&

(ah_auth_alg == "hmac-nd5")) && ((network_nmode == ‘"default") &&
(security_level == "default"))) || ((((remote_filter_port == "79") &&
(ah_present == "yes")) && (ah_auth_al g == "hmac- md5")) &&
((network_nmode == "default") && (security_level == "default")))))) ||

(CCC(C(((((local _filter_port == "23") && (esp_auth_alg == "hmac-nmd5"))
&% (esp_enc_alg == "blowfish")) && (esp_present == "yes")) &&
(security_level == "high")) && (network_node == "inmpacted")) ||

((((((remote_filter_port == "23") && (esp_auth_alg == "hmac-nd5")) &&
(esp_enc_al g == "bl owfish")) && (esp_present == "yes")) &&
(security _level == "high")) && (network_node == "inpacted"))) ||

((((((local _filter_port == "79") && (ah_auth_alg == "hmac-nd5")) &&
(ah_present == "yes")) && (security_level == "high")) && (network_node
== "inmpacted")) || (((((rempte_filter_port == "79") && (ah_auth_alg ==
"hmac-nd5")) && (ah_present == "yes")) && (security level == "high"))

& & (network_mobde == "inpacted")))) || ((((((((local _filter_port ==
"23") && (esp_auth_alg == "hmac-nd5")) && (esp_enc_alg == "cast")) &&
(esp_present == "yes")) &% (security_level == "medi um')) &&
(network_mode == "inpacted")) || ((((((renmote_filter_port == "23") &&
(esp_auth_alg == "hmac-nd5")) &% (esp_enc_alg == "cast")) &&
(esp_present == "yes")) && (security_level == "medi unt')) &&
(network_mode == "inpacted"))) || ((((((local _filter_port == "79") &&
(ah_auth_alg == "hmac-ripenmd")) &% (ah_present == "yes")) &&
(security level == "npediun')) && (network_node == "inpacted")) ||

(((((renmote_filter_port == "79") && (ah_auth_alg == "hnac-ripend")) &&
(ah_present == "yes")) &% (security_level == "medi unt')) &&
(network_node == "inpacted"))))) || ((((((((local _filter_port == "23")

&% (esp_auth_alg == "hmac-md5")) && (esp_enc_alg == "des")) &&
(esp_present == "yes")) && (security_level == "low')) && (network_node
== "inmpacted")) || ((((((rempte_filter_port == "23") && (esp_auth_alg
== "hmac-nd5")) && (esp_enc_alg == "des")) && (esp_present == "yes"))

&% (security_level == "low')) && (network_node == "inpacted'))) ||

((((((local _filter_port == "79") && (ah_auth_alg == "hnac-ripend")) &&
(ah_present == "yes")) && (security level == "low')) && (network_node
== "inmpacted")) || (((((rempte_filter_port == "79") && (ah_auth_alg ==
"hmac-ripemd")) && (ah_present == "yes")) && (security_level == "low"))

&& (network_mode == "inpacted")))))) || ((((((((((local_filter_port ==
"23") && (esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "aes")) &&
(esp_present == "yes")) && (security level == "high")) && (network_npde
== "crisis")) || ((((((renpte_filter_port == "23") && (esp_auth_al ==
"hmac-sha")) && (esp_enc_alg == "aes")) && (esp_present == "yes")) &&
(security_level == "high")) && (network_mpde == "crisis"))) ||

((((((local filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) && (security_ level == "high")) && (network_node
== "crisis")) || (((((remte_filter_port == "79") && (ah_auth_alg ==
"hmac-sha")) && (ah_present == "yes")) && (security_level == "high"))

&& (network_node == "crisis")))) || ((((((((local _filter_port == "23")

&% (esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "3des")) &&
(esp_present == "yes")) &% (security_level == "medi unt')) &&
(network_mde == "crisis")) || ((((((remote_filter_port == "23") &&
(esp_auth_alg == "hnac-sha")) &% (esp_enc_alg == "3des")) &&
(esp_present == "yes")) &% (security_level == "medi um')) &&
(network_nmode == "crisis"))) || ((((((local _filter_port == "79") &&
(ah_auth_al g == "hmac-sha")) && (ah_present == "yes")) &&
(security_level == "pedium')) && (network_mpde == “crisis")) ||

(((((renpte_filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) & & (security_level == "medi unt')) &&

306

(network_mode == "crisis"))))) || ((((((((local _filter_port == "23") &&

(esp_auth_alg == "hnmac-sha")) & & (esp_enc_alg == "3des")) &&
(esp_present == "yes")) && (security_level == "low')) && (network_node
== "crisis")) || ((((((rempte_filter_port == "23") && (esp_auth_alg ==
"hmac-sha")) && (esp_enc_alg == "3des")) && (esp_present == "yes")) &&
(security_Ilevel = "low")) &% (network_nbde == "crisis"))) [
((((((local _filter_port == "79") && (ah_auth_alg == "hnac-ripend")) &&
(ah_present == "yes")) && (security level == "low')) && (network_node
== "crisis")) || (((((remte_filter_port == "79") && (ah_auth_alg ==
"hmac-ripemd")) && (ah_present == "yes")) && (security_level == "low"))
&& (network_node == "crisis"))))))

307

THISPAGE INTENTIONALLY LEFT BLANK

308

APPENDIX M. SECURITY PROPOSAL SUMMARY

The following table is a summary of the security proposas found in

isakmpd.policy (Appendix K) and keynotednf.policy (Appendix L).

SECURITY LEVEL
L ow | Medium | High
Applications | Encryption/Authentication Algorithm
N Normal | Telnet DESMD5 CAST SHA | 3DES SHA
E M Finger MD5 MD5 SHA
T O |Criss | Tenet 3DES SHA 3DESSHA | AESSHA
W D Finger SHA SHA SHA
O E |Impact | Telnet DESMD5 DESMD5 | 3DESMD5
R Finger MD5 MD5 MD5
K
Default Telnet | DESMD5
Setting Finger | MD5

Table M.1. Security Proposal Summary

309

THISPAGE INTENTIONALLY LEFT BLANK

310

LIST OF REFERENCES

Angelos D. Keromytis, John loannidis, and Jonathan M. Smith, Implementing IPsec, In
Proceedings of the IEEE Global Internet (GlobeCom) 1997, pp. 1948 - 1952. November
1997, Phoenix, AZ.

Aurrecoechohea, C., Campbell, A., and Hauw, L. A., A Survey of Quality of Service
Architectures, Multimedia Systems Journal, Special Issue on QoS Architectures, 1996.

Blaze Matt, Feigenbaum, Joan, loannidis, John, and Keromytis, Angelos D, The KeyNote
Trust Management System Version 2, (RFC 2704, Network Working Group, September
1999, http://www.ietf.org/rfc/rfc2404.txt

Blaze, Matt, Feigenbaum, Joan, and Keromytis, Angelos D., KeyNote: Trust
Management for Public-Key Infrastructures, In Proceedings of the 1998 Security
Protocols International Workshop, Springer LNCS vol. 1550, pp. 59 - 63. April 1998,
Cambridge, England. Also AT& T Technical Report 98.11.1.

Blaze, Matt, loannidis, John and Keromytis, Angelos D. Trust Management and Network
Security Protocols, In Proceedings of the 1999 Security Protocols International
Workshop, April 1999, Cambridge, England.

Blaze, Matt, loannidis, John and Keromytis, Angelos D., Trust Management for I1Psec, In
Proceedings of the Internet Society Symposium on Network and Distributed Systems
Security (SNDSS) 2001, pp. 139 - 151. February 2001, San Diego, CA.

Chatterjee, S., Sabata, B., Sydir, J. ERDOS Qos Architecture, SRI Technical Report
ITAD-1667-TR-98-075, Menlo Park, CA, May 1998.

Doraswamy, Naganand and Harkins, Dan, IPsec The New Security Standard for the
Internet, Intranets, and the Virtual Private Networks, Prentice-Hall, Inc., 1999.

Harkins, D. and Carrel, D., The Internet Key Exchange (IKE), RFC 2409, Network
Working Group, November 1998, http://www.ietf.org/rfc/rfc2409.txt

Irvine, C.E. and Levin, T., Quality of Security Service, Proceedings of the New Security
Paradigms Workshop, Cork, Ireland, September 2000

ISAKMPD.CONF(5), OpenBSD Programmer’s Manual, http://www.openbsd.org/cgi-
bin/man.cgi, October 1998.

ISAKMPD.POLICY (5), OpenBSD Programmer’s Manual, http://www.openbsd.org/cgi-
bin/man.cgi, October 1998.

311

Java 2 Standard Edition, V1.2.2 APl Specification,
http://java.sun.com/products/jdk/1.2/docs/api/, Sun Microsystems, Inc., 1999.

Kent, S and Atkinson, R, Security Architecture for the Internet Protocol, RFC2401,
Network Working Group, November 1998, http://www.ietf.org/rfc/rfc2401.txt

KEYNOTE(5), OpenBSD Programmer’s Manual, http://www.openbsd.org/cgi-
bin/man.cgi, October 1999.

Leiseboer, John, IPSEC — Security Architecture for 1P, Part 2: Security Association,
http://www.chi pcenter.com/eexpert/jlei seboer/jl el seboer036.html, ChipCenter: The Web's
Definitive Electronics Resource, Modified 12/05/2001.

(LK(kn_add_action()), OpenBSD Programmer’s Manual Pages, OpenBSD Operating
System Version 2.8, 2000.

LK(kn_do_query()), OpenBSD Programmer’s Manual Pages, OpenBSD Operating
System Version 2.8, 2000.

Maughan, D., Schertler, M., Schneider M., Turner J., Internet Security Association and
Key Management Protocol (ISAKMP), RFC 2408, Network Working Group, November
1998, http://www.ietf.org/rfc/rfc2409.txt

Naval Postgraduate School, NPS-CS-02-001, IPsec Modulation for the Quality of
Security Service, Spyropoulou, Evdoxia., Agar, Christopher D., Levin, Timothy, and
Irvine, Cynthia, January 2002.

Naval Postgraduate School, NPS-CS-02-002, KeyNote Policy Files and Conversion to
Digunctive Normal Form for Use in IPsec, Spyropoulou, Evdoxia., Levin, Timothy, and
Irvine, Cynthia, January 2002.

Naval Postgraduate School, NPS-CS-02-003, Demonstration of Quality of Security
Service Awareness for IPsec, Spyropoulou, Evdoxia, Levin, Timothy, and Irvine,
Cynthia, January 2002.

Savolainen, Sampo, Internet Key Exchange (IKE), Department of Electrical and
Communications Engineering, Helsinki University of Technology, 1999.

Simpson, W A, Cipher Block Chaining (CBC), Internet Draft, Network Working Group,
July 19998, http://www.ietf.org/proceedings/99mar/1-D/draft-simpson-cbc-01.txt

Spyropoulou, E., Levin, T., and Irvine, C.E., Calculating Costs for Quality of Security
Service, Proceedings of the 16th Annual Computer Security Applications Conference,
New Orleans, LA, December 2000.

Thayer, R., Doraswamy,N., and Glenn, R., IP Security Document Roadmap, RFC 2411,
Network Working Group, November 1998, http://www.ietf.org/rfc/rfc2411.txt

312

Using IPsec (Internet Security Protocol), http://www.openbsd.org/fag/fagl3.html,
October 2001.

313

THISPAGE INTENTIONALLY LEFT BLANK

314

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Carl Siel
Space and Naval Warfare Systems Command, PMW 161
San Diego, California

Commander, Naval Security Group Command
Nava Security Group Headquarters
Fort Meade, Maryland

Ms. Deborah M. Cooper
Deborah M. Cooper Company
Arlington, Virginia

Ms. Louise Davidson
N643, Presidentia Tower 1
Arlington, Virginia

Mr. William Dawson
Community CIO Office
Washington DC

Ms. Deborah Phillips, Community Management Staff
Community CIO Office
Washington DC

Capt. James Newman
N64

Presidential Tower 1
Arlington, Virginia

Major Dan Morris
HQMC, C4lA Branch
TO: Navy Annex
Washington, DC

315

11.

12.

13.

14.

15.

Mr. Richard Hale
Defense Information Systems Agency, Suite 400
Falls Church, Virginia

Ms. Barbara Flemming
Defense Information Systems Agency, Suite 400
Falls Church, Virginia

Mr. Michael Green, Director

Public Key Infrastructure Program Management Office
National Security Agency

Ft. Meade, Maryland

Dr. CynthiaE. Irvine

Computer Science Department, Code CS/IC
Naval Postgraduate School

Monterey, California

Mr. Timothy Levin

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, California

316

